
Enabling IP Reuse and Protection in
Out-of-Order Parallel SystemC Simulation

Zhongqi Cheng, Tim Schmidt and Rainer Doemer

University of California at Irvine, USA

Abstract. Parallel discrete event simulation has presented itself to be a
tempting approach for high speed SystemC simulation. To preserve the
simulation semantics, a compiler based approach statically analyzes race
conditions in the design model. However, there are severe restrictions:
the source code for the input design must be available in one file, which
does not scale. This disables the use of Intellectual Property (IP) and
hierarchical file structures. In this paper, we extend the static analysis
design flow to support separate files and IP reuse by introducing Partial
Segment Graph (PSG) abstraction and prevent IP security leakage. Ex-
periments demonstrate the effective design flow and sustained speedup
with parallel IPs.

Keywords: Out-of-order PDES · Intellectual Property · SystemC.

1 Introduction

The complexity of system design has been growing with the increasing function-
ality of modern embedded systems. As a system level design language, the IEEE
SystemC standard [1] is widely used for testing, validation and verification of
system level models. The proof-of-concept Accellera SystemC simulator [2] is
based on Discrete Event Simulation (DES) and runs sequentially. In contrast,
Out-of-order Parallel Discrete Event Simulation (OoO PDES) [3] can exploit the
parallel computation of modern multi- and many-core platforms. In OoO PDES,
threads comply with a partial order such that different simulation threads may
run in different time cycles to increase the parallelism of execution.
The Recoding Infrastructure for SystemC (RISC) [4] has been developed to im-
plement OoO PDES for SystemC. RISC includes a dedicated compiler and an
OoO PDES library. The RISC compiler is the frontend that processes the input
SystemC file. It first builds the Abstract Syntax Tree (AST) of the input file
and then derives from the AST the behavior model (BM) of the input SystemC
design. With BM available, the RISC compiler then performs static analysis re-
garding potential thread race conditions of the design.
The BM is an abstraction of the execution of the SystemC processes in the de-
sign. The RISC compiler represents BM with a statically built Segment Graph
(SG) data structure. Based on the SG, the RISC compiler is able to analyze the
data conflicts, timing conflicts and event hazards in the design.

2 Zhongqi Cheng, Tim Schmidt and Rainer Doemer

1.1 Problem Definition

To completely build the BM of the input SystemC design, the RISC compiler
needs the entire AST for the input model. Thus the user has to provide all the
source code in one single translation unit. In other words, the RISC compiler
cannot build BM for SystemC designs whose source code is separately structured
in multiple source files or 3rd party Intellectual Properties (IP). With the wide
use of IP, this requirement severely restricts the RISC compiler to meet industrial
system level design needs.
In this paper, we propose a solution that scales the RISC compiler to support
multiple file inputs, especially for the integration of IPs, as shown in Figure 1.
In the new design flow, the construction of BM no longer relies on the complete
AST. Besides the usual object and header files, component providers supply a
partial design (PD) file that abstracts the BM of integrated design components.
Specifically, in the PD file, the BM is abstracted by a Partial Segment Graph
(PSG). IP providers can inspect and redact the PD file, in order to further
minimize the PSG, which protects the security of their IP. On the user’s side,
by combining all the received PSGs, the RISC compiler is able to reconstruct
the BM of the whole design.

Fig. 1: Scaled RISC tool flow with IP components

1.2 Related Work

IP reuse and protection have not received a lot of attentions in parallel simula-
tion. In [5], the authors described an effective methodology for IP reuse in SOC
design. They studied the IP enhancement and also proposed a framework for the

Title Suppressed Due to Excessive Length 3

reuse of customer IP.
Parallel SystemC simulation is well-studied. In [6], the SystemC-clang is pro-
posed. It analyzes SystemC models with a mixture of transaction-level and
register-transfer level components. In [7], the authors studied the distributed
parallel simulation, where SystemC models are organized into small executable
units and distributed onto different host machines to run in parallel.
In [8], the authors proposed a way to use pre-defined graphs to represent the
BM of IP components. However, this simple approach requires the users to man-
ually analyze the design and insert pragmas where needed. Furthermore, there
are only three kinds of predefined graphs, which is insufficient. In contrast, we
propose PSG as the data structure to represent the BM of IP components, which
is accurate and is automatically built by a compiler.

2 Partial Segment Graph

We now describe the PSG technique that represents the BM in each seperate
translation unit.

2.1 Behavior Model and Segment Graph

The behavior model of a SystemC design can be described by the Segment
Graph, which provides a way to analyze threads and their position during exe-
cution. The SG is a directed graph where each node is a sequence of code state-
ments executed between two scheduling steps, i.e., wait statements [3]. During
the execution of the model, the scheduling step is the entry to the simulator ker-
nel. The edges in the SG indicate the transition between segments. An example
of SystemC source code and corresponding SG is shown in Figure 2a and Figure
2b.
In this example, line 8 y++ and line 12 s=s*s could possibly be executed in
the same simulation cycle, so they are put both into segment 3. One statement
may also belong to multiple segments as it may occur in different cycles. Both
segment 2 and segment 3 contain s=s*s. Note that a new segment starts only
on wait statements except for the first one, which is the entry point of a thread.

2.2 Concept of PSG

In our proposed design flow, we store the BM specified in each translation unit
as a PSG in a PD file and when the PSGs are loaded and integrated together,
they reconstruct the complete SG.
The main difference between PSG and SG is that PSG is built based on an

incomplete AST, where definitions of function calls may be unknown. An exam-
ple is shown in Figure 3a. It contains only the definition and implementation
of module M. Function p->func() is called in M::th(), but it is not defined
in this translation unit. We refer to a function call that lacks the definition as

4 Zhongqi Cheng, Tim Schmidt and Rainer Doemer

void foo(){

 index++;

 wait(2,SC_NS);

 k=1;

 if(flag){

 x++;

 wait(10,

 SC_NS);

 y+;

 }else{

 a=5;

 }

 s=s*s;

 wait(1,SC_NS);

 t=s+1;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(a) Example Source
Code

(b) SG of Fig. 2a

Fig. 2: SystemC Code and corresponding SG

a non-defining function call. Because the compiler cannot determine from the
current AST if a non-defining function call contains scheduling steps or not, the
simulation cycle of the code statements following the non-defining function call
cannot be statically determined. In the example, we cannot know if line 5 and
line 7 execute in the same cycle.
To deal with this uncertainty incurred by the non-defining function calls, we
introduce three types of PSG nodes:

– Segment node contains a sequence of code statements executed in the same
determined simulation cycle. In Figure 3a, M::a++ belongs to a segment
node because its simulation cycle is determined, which is the first cycle of

SC_MODULE(M){

 ...

 sc_port<C> p;

 void th(){

 M::a++;

 p->func();

 M::b=1;

 }

 ...

}

1

2

3

4

5

6

7

8

9

10

(a) Example Source Code

M::a++

(b) PSG of Fig. 3a

Fig. 3: SystemC Code and PSG

Title Suppressed Due to Excessive Length 5

the sc thread M::th(). A segment node becomes a segment after the inte-
gration of PSGs.

– Partial segment node contains a sequence of code statements executed in
the same non-determined simulation cycle. In Figure 3a, M::b=1 belongs to
a partial segment node because it is executed after the non-defining function
call p->func(). Later during the PSG integration phase, the partial segment
node will be merged with other segment nodes.

– Partial function call node is created as a place holder for the non-defining
function call in the PSG such that during the PSG integration phase, the
partial function call node can be replaced by the sub-PSG corresponding to
the function’s definition. In Figure 3a, node 3 is a partial function call node
for the non-defining function call p->func().

2.3 Create PSG

A PSG is recursively built by traversing the AST of the current translation unit,
as shown in Algorithm 1. If the current statement CurrStmt is a scheduling entry
point (wait statement), then an empty segment node is created and connected to
the nodes in the CurrNodes. On the other hand, if CurrStmt is not a scheduling
point, then it is added to all the nodes in CurrNodes. This is similar as in the
BuildSG in [8]. The main difference is that to build PSG, the compiler also needs
to deal with non-defining function calls. If CurrStmt contains a non-defining
function call, for example f(), the compiler first builds a partial function call
node NewNode and stores the qualified name M::f(). Next, the compiler connects
NewNode to all the nodes in CurrNodes. Then, a partial segment node NextNode

is created and connected to NewNode, and the compiler sets NextNode as the
only node in the CurrNodes.

2.4 Store and Load PSG

The PD file stores an abstraction of the PSG. For each node, we omit the de-
tailed code statements and store only the access types (R,W,RW) to non-local
variables. This is sufficient for the RISC compiler to analyze the data and event
conflicts. In addition, some meta-data is stored for each node, which is needed for
the integration of PSGs, as listed in Table 1. Note that the PD file is compatible
with dot format and the PSG therefore can easily be visualized. An example of
PSG is later shown in Figure 8.
A PSG is loaded from the PD file with a dot file parser. The parser reads the
attributes of each PSG node, and reconstructs the data in memory. For example,
a node has a variable access attribute (W)M::a, which indicates that M::a is been
written in the node. To load the node into memory, the PSG parser locates the
symbol of M::a in the AST and puts it into the variable write list of the node.
PSG edges are constructed according to the connections specified in the PD file.
After the loading of individual PSGs, the compiler integrates them together to
construct the complete SG.

6 Zhongqi Cheng, Tim Schmidt and Rainer Doemer

Algorithm 1 Partial Segment Graph Generation

1: function BuildPSG(CurrStmt, CurrNodes)
2: if isBoundary(CurrStmt) then
3: NewNode ← new segmentNode
4: for Node ∈ CurrNodes do
5: AddEdge(Node, NewNode)
6: end for
7: return CurrNodes ∪ { NewNode }
8: else if isNonDefiningFunctionCallStmt(CurrStmt) then
9: NewNode ← new partialFuntionCallNode

10: Mark(NewNode, getFuncName(CurrStmt))
11: for Node ∈ CurrNodes do
12: AddEdge(Node, NewNode)
13: end for
14: NextNode ← new partialSegmentNode
15: AddEdge(NewNode, NextNode)
16: else if isControlFlow(CurrStmt) then
17: BuildSG(CurrStmt, CurrNodes)
18: ...
19: end if
20: end function

2.5 Integration phase

A complete segment graph is the basis for accurate static analysis. After loading
all the PSGs, first the partial function call nodes are recursively replaced with
the corresponding sub-PSG. Second, all the partial segment nodes are merged
with segment nodes they follow. All remaining nodes in the graph are segment
nodes (with underlying wait boundaries) and belong to determined simulation
cycles, such that the integrated graph by definition becomes a proper segment
graph. With the reconstructed SG, the RISC compiler has the complete the BM
and can perform the needed static analysis of the design.
We illustrate the merging process of two PSGs in Figure 4a, 4b and 4c. In this
example, node 2 is a partial function call node that holds the non-defining func-
tion call func(), and node 5, node 6 and node 7 are loaded from the psg in
func.pd and forms the sub-PSG of func(). node 5 and node 7 are respectively
the entry and exit node of func(). First, node 3 is merged into node 7 because
they belong to the same simulation cycle. After merging, node 4 is connected
to node 7 since it was connected to node 3. Then, node 5 is merged into node 1
because it is the starting node of func(). node 6 is connected to node 1 since
it was connected to node 5.

3 IP Protection and Security

IP reuse is an important feature in semiconductor industry. Basically, an IP
consists of two parts: a header file that describes the interfaces and protocols,

Title Suppressed Due to Excessive Length 7

Table 1: PSG meta-data node attributes

Attribute Description

Node type
Segment node, Non-segment node,

Function call node

Written variables Qualified name of variables written

Read variables Qualified name of variables read

Notified events Qualified name of events notified

Dependent events Qualified name of events waiting for

Hosting function name Qualified name of function belonging to

Hosting module name Qualified name of module belonging to

Is entry node Marker for function entry point

Is exit node Marker for function exit point

Is simulation process Marker for simulation process

Non-defining function name Qualified name of non-defining function

(a) Two PSGs (b) Phase 1 (c) Phase 2

Fig. 4: Integration of PSGs

and a binary file that implements the IP component. Since no implementation
source code is provided, the IP is protected. The internal BM of the IP is hidden
from the users.
However, static analysis cannot be performed without the BM. We need the IP
provider to supply an abstract PSG of the IP to the user via PD files. For the
IP provider not to reveal too much implementation detail and to solve this IP
security leakage problem, we allow the IP provider to redact the PSG in the
PD file, so that the implementation details remain hidden. If desired, misleading
information can even be added. This way the users will not be able to obtain
the inner implementation, while still maintaining the correctness of BM.

8 Zhongqi Cheng, Tim Schmidt and Rainer Doemer

Fig. 5: SystemC model of Bitcoin miner

3

0

10

32

1

3

012

13

2

00

(a) Original

1

0

3

22

1

1

(b) Redacted

Fig. 6: Original and redacted scanner.pd

Figure 5 shows the SystemC model of a Bitcoim miner [9]. It has several user
defined modules (receiver and sender) for data input and output, and uses an IP
module (scanner) for number crunching. Three PD files (receiver.pd, sender.pd,
scanner.pd) contain the corresponding BM of each module.
By default, in each PD file the RISC compiler stores (1) the qualified name
of variables accessed and access types, (2) qualified name of events and depen-
dencies, (3) PSG structure and timing advance. For receiver.pd and sender.pd,
it is fine to have such information transparent because the two modules are
user-defined. However, for scanner.pd, exposing the internals is risky from the
perspective of IP protection.
The original and redacted versions of scanner.pd are shown in Figure 6. Here
the numbers in the PSG nodes indicate the number of variable accesses stored.
Compared to the original, the revised file has fewer nodes, and each node has
fewer variable accesses stored. These modifications are carefully performed such

Title Suppressed Due to Excessive Length 9

that during the simulation, the model still executes correctly.

3.1 Redaction of PD files for IP Protection

There are several possible changes that can be performed to redact the PSG:

1. Reduce the amount of variable accesses: If two nodes share more than one
internal variable accesses, only one of them needs to be kept and others
can be removed from the two nodes. This does not change the data conflict
of the two segments. Only externally visible variables need to be retained.
Furthermore, if a variable is read only in any node, it can be removed because
it cannot lead to data conflicts.

2. Add fake variable access: By adding extra variables to a node, the IP provider
can further obscure the IP and inject misleading details.

3. Hide nodes: An entire node that contains no variable accesses or event notifi-
cations can be hidden from PSG because it does not affect the static analysis.
To maintain the timing correctness, the incoming and outgoing edges need
to merge.

4. Merge segment nodes: Segment nodes can be merged to form an aggrega-
tion. This effectively hides the detailed PSG structure. The downside is that
merging may pollute conflict-free segment pairs. Two code statements that
actually can run in parallel after merging run only sequentially because they
now belong to two conflicting aggregated nodes.

In general, there is a trade-off between the amount of IP protection versus the
analysis accuracy, which may affect simulation performance.

4 Experimentats and Results

We first show the correctness of the proposed design flow using a simple producer-
consumer example and a more complex Canny edge detector model. Then we
demonstrate our IP protection using a SystemC model of Bitcoin miner, where
we designed an IP for the parallel data crunching module and redacted the PD
file to hide details in the PSG. Our experiments were executed on an Intel Xeon
E3-1240 multicore processor with 8 CPU cores. The CPU frequency scaling was
turned off so as to provide accurate and stable results.

4.1 Producer-Consumer Example

In the producer-consumer model, we have defined and implemented each mod-
ule/channel in individual files. According to the tool flow in Figure 1, we first
generate the PD file for each translation unit. At top level, RISC integrated the
PSGs. The regular RISC tool flow without PD support cannot handle this multi-
file design and generates an error message. Now with the proposed approach,
RISC is able to correctly perform static analysis and generates a functioning
parallel executable.

10 Zhongqi Cheng, Tim Schmidt and Rainer Doemer

4.2 Canny Edge filter

The Canny edge detector algorithm is a multi-stage operator that detects edges
in an image. Our SystemC model has a pipeline structure with five stages, and
each stage communicates with the next via user-defined channels. We have de-
fined and implemented all stage modules and channels in different translation
units. In this experiment, we have a total of 15 implementation files and corre-
sponding PD files. The sequential simulation runs for 280.90 seconds, and the
parallel one runs for 116.48 seconds, achieving a speedup of 2.41x.
Without the proposed technique, the RISC compiler generates an error and
cannot compile. With the proposed design flow, the RISC compiler is able to
construct the BM of the complex design and correctly perform static analysis,
and gains speedup for the simulation.

4.3 Bitcoin miner

We have implemented a Bitcoin miner model in SystemC to demonstrate the IP
protection capability. Our model consists of 3 stages: data preparation, scanning
and result output, as shown in Figure 7. The scanning stage involves the use of
multiple parallel scanners, which runs SHA256 algorithm are provided as IP. In
order to protect the IP, we have inspected scanner.pd and carefully redacted the
PSG. The graphical view of the default and the redacted PD files of scanner are
shown in Figure 8. We have removed several variable accesses because they do
not actually result in conflicts. Furthermore, We have redacted the structure of
PSG by removing an empty node. The new PSG is smaller and hides information
about the detailed implementation of the scanner.

Fig. 7: SystemC model of Bitcoin miner

Table 2 shows the simulation speed of Bitcoin miner model with different
number of scanners under both sequential and parallel simulations, using the
default and redacted PD files of the IP. We have performed this experiment on
a Xeon E1240 8-core processor. The speedup of the parallel simulation grows
about linearly with the number of scanners. When there are 8 scanners, we get
the maximum speedup of 6.76x. A full speedup of 8 cannot be achieved because
of the sequential part in the model and the scheduling overhead of OoO PDES.
Another important observation is that the simulation result and speed does
not change with the IP scanner. This demonstrates that our information hiding
approach works well for IP protection.

Title Suppressed Due to Excessive Length 11

Fig. 8: Original and modified PSG for scanner

Table 2: Simulation of Bitcoin Miner SystemC Model: runtime(secs)/speedup

#scanner SEQ Original Modified

1 117.68 / 1 117.69 /1.00 117.51/1.00

2 114.96 / 1 86.90 / 1.32 87.2/1.32

4 158.00 / 1 49.08 / 3.22 50.11/3.15

8 164.50 / 1 24.91 / 6.60 24.32/ 6.76

5 Conclusion

This work removes two scaling limitations of static-analysis based parallel Sys-
temC simulation. The new Partial Segment Graph (PSG) techniques enable the
use of hierarchical input models with multiple translation units and the reuse
of SystemC IP components. 3rd party IP is protected from security leakage by
high abstraction from the source code, using automatically generated behavior
model that the IP provider can further redact to meet trust expectations. The
IP-enabled design flow is effective and sustains the speedup of advanced parallel

12 Zhongqi Cheng, Tim Schmidt and Rainer Doemer

simulation.

Acknowledgement

This work has been supported in part by substantial funding from Intel Cor-
poration for the project titled ”Scaling the Recoding Infrastructure for Parallel
SystemC Simulation”. The authors thank Intel Corporation for the valuable
support.

References

1. IEEE Standard 1666-2011 for Standard SystemCR© Language Reference Manual,
IEEE Computer Society, January 2012.

2. SystemC Language Working Group. (2014). SystemC 2.3.1, Core SystemC Language
and Examples, Accellera Systems Initiative.

3. W. Chen, X. Han, C. W. Chang, G. Liu, and R. Dömer. Out-of-Order Parallel
Discrete Event Simulation for Transaction Level Models. IEEE TCAD, 33(12):1859-
1872, 2014.

4. Lab for Embedded Computer Systems (LECS). Recoding Infrastructure for Sys-
temC [Online]. Available: http://www.cecs.uci.edu/~doemer/risc.html#RISC050

5. S. Sarkar, S. Chanclar G and S. Shinde, Effective IP reuse for high quality SOC
design, IEEE SOCC, 2005, pp. 217-224.

6. Kaushik A, Patel HD, SystemC-clang: an open-source framework for analyzing
mixed-abstraction SystemC models. FDL, Paris 2013

7. J. Viitanen, P. Sjvöall, M. Viitanen, T. D. Hämäläinen, and J. Vanne. Distributed
SystemC simulation on manycore servers. In IEEE NORCAS, pages 1-6, 2016.

8. T. Schmidt, G. Liu, R. Dömer. Hybrid Analysis of SystemC Models for Fast and
Accurate Parallel Simulation, ASPDAC, Tokyo, Japan, January 2017.

9. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

http://www.cecs.uci.edu/~doemer/risc.html#RISC050

	Enabling IP Reuse and Protection in Out-of-Order Parallel SystemC Simulation

