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Abstract: System level design is considered a major approach to tackle the com-
plexity of modern System-on-Chip designs. Embedded software within
SoCs is gaining importance as it addresses the increasing need for flex-
ible and feature-rich solutions. Therefore, integrating software design
and co-simulation into a system level design flow is highly desirable.

In this article, we present the software perspective within our system-
level design flow. We address three major aspects: (1) modeling of a
processor (from abstract to ISS-based), (2) porting of an RTOS, and
(3) the embedded software generation including RTOS targeting.

We describe these aspects based on a case study for the ARM7TDMI
processor. We show processor models including a cycle-accurate ISS-
based model (using SWARM), which executes the RTOS MicroC/OS-II.
We demonstrate our flow with an automotive application of anti-lock
breaks using one ECU and CAN-connected sensors. Our experimental
results show that automatic SW generation is achievable and that SW
designers can utilize the system level benefits. This allows the designer
to develop applications more efficiently at the abstract system level.
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1. INTRODUCTION
Embedded software plays an important role in todays complex SoCs

since it allows to flexibly realize a large feature set. However, writing
software manually is not desirable due to the amount of code and the
hardware often not being available in early stages. Therefore, it is highly
desirable to address software development as early as possible. To accel-
erate the design process and to increase the productivity, system-level
design has to accommodate software concerns enabling a seamless co-
design of software and hardware.
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1.1 Problem Statement
In order to reduce the time-to-market, designers utilize system-level

design that reduces the complexity by moving to higher levels of ab-
straction. Time and cost of software development can be dramatically
reduced when properly integrated into the system-level design flow.
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Figure 1. Software generation
within system level design flow.

In this article, we describe soft-
ware aspects in our system-level de-
sign flow [1]. We focus on three ma-
jor elements (see Figure 1) that are
crucial to the software support:

Processor models at different
levels of abstraction.
Real-Time Operating System
(RTOS) support.
Generation of software, tar-
geted to a selected RTOS.

This article describes each ele-
ment based on a case study for an
ARM7TDMI microprocessor.

1.2 Related Work
System-level modeling has become an important issue, as a means

to improve the SoC design process. System Level Design Languages
(SLDLs) for capturing such models have been developed (e.g. SystemC
[15], SpecC [10]). Significant research effort has been invested into frame-
works for system level design and software synthesis.

Benini et al. [5] introduce MPARM, an MPSoC platform simulator.
It provides a multi-processor cycle-accurate architectural simulator by
encapsulating different Instruction Set Simulators (ISSs) in SystemC. Its
main purpose is the analysis and profiling of system performance. Our
approach, on the other hand, focuses on the generation of software.

Herrara et al. [17] describe an approach for embedded software gen-
eration from SystemC that overloads SystemC class library elements in
order to use the same code for simulation and target execution. However,
the approach imposes strict requirements to the input specification.

Several commercial tool sets provide integrated simulation environ-
ments for SoC designs: e.g. ARM’s SoC Designer [3] and CoWare’s
Virtual Platform Designer [7]. While these tools focus on the ISS-based
co-simulation aspect, our approach additionally includes abstract proces-
sor modeling and software generation.
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In previous work [24], we describe abstract simulation models for
processors. Similar work includes [11]. In this paper, we focus on the
design flow to automatically generate the target software.

1.3 Outline
This document is organized as follows: Section 2.1 describes modeling

of the ARM7TDMI [4] processor from abstract to ISS-based models.
Section 2.2 reports on the RTOS support for the selected processor. In
Section 2.3, we give an overview of the software generation and targeting.
Finally, we demonstrate the resulting integrated flow in Section 3.

2. SOFTWARE SUPPORT
Supporting software development in system level design requires three

major elements: processor modeling, RTOS support and generation of
the embedded software.

2.1 Processor Modeling
Processor modeling captures an existing processor at different levels

of abstraction, describing its characteristics and behavior [12].
For this case study, we chose the ARM7TDMI [4], a widely used 32-bit

embedded RISC microprocessor [2]. It uses a three-stage pipeline (fetch,
decode and execute) and has single a 32-bit bus interface carrying both
instructions and data. The ARM7TDMI has two level-sensitive inter-
rupts (nIRQ, nFIQ). Using the AMBA Design Kit [2], the ARM7TDMI
connects to the Advanced High-performance Bus (AHB).

We have captured the processor at different levels of abstraction, start-
ing with the most abstract behavioral model, then the bus functional
model, and finally the ISS-based cycle-accurate model.

2.1.1 Behavioral Model. The behavioral model is the most
abstract representation of the processor capturing only basic character-
istics. It enables performance analysis in the early stages of the design.

The basic characteristics include the clock frequency, computing power
in MIPS, power consumption, instruction width, data width, and data
and program memory size. Some attributes are specified as ranges, for
adaptation to the particular design needs (e.g. clock frequency).

Weight tables [6] constitute the main portion of the behavioral model.
They are used for interpretation of generic profiling results and yield
comparative analysis of different design alternatives. The ARM7TDMI
behavioral model contains two weight tables, one for execution speed
and the other for footprint estimation.
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The computation weight table correlates C-level operations with clock
cycles needed for their execution. It contains one entry for each operation
and data type stating the minimal number of execution cycles. Using
this table and the profiling information for each basic block, the system
performance can be estimated, giving an early performance comparison
between designs satisfying the fidelity property [9]. Similarly, a second
weight table contains parameters for estimating the code size.

2.1.2 Bus Functional Model. The Bus Functional Model
(BFM) is a pin-accurate and cycle-approximate model describing the
processor’s communication interfaces and behavior.
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Figure 2. ARM7TDMI BFM.

As shown in Figure 2, the
ARM7TDMI BFM consists of
a behavior hierarchy. The
outer shell contains three paral-
lel executing behaviors: proces-
sor core, Programmable Interrupt
Controller (PIC) and timer. The
core consists of two parallel exe-
cuting behaviors: Hardware Ab-
straction Layer (HAL) and Inter-
rupt Request (IRQ). The initially
empty HAL will contain the user
computation behaviors, which get
inserted in the design flow. The
IRQ behavior houses the logic for interrupt detection and handling.
Upon receiving a core interrupt, it preempts execution of user code in
the core and starts the system interrupt handler.

The core communicates through the AMBA AHB master interface
with external components (e.g. PIC and timer). The PIC [21] maps 32
external interrupts (each maskable and configurable in priority) to the
core interrupts (nIRQ, nFIQ). The timer, disabled by default, generates
periodic interrupts needed for the timing services of the RTOS.

The bus interface is realized as a layered set of inlined channels [23].
The additional channel Protocol Wrap disables interrupts during a bus
transfer by the processor core to maintain accurate protocol timing.

2.1.3 Cycle-Accurate Processor Model. Accurate simula-
tion of the software is offered by the cycle-accurate (CA) processor model
based on an ISS integration, therefore also called instruction set model,
and allows the execution of the final target binaries to validate the soft-
ware synthesis output (Section 2.3).

292



Embedded Software Development in a System-Level Design Flow

We integrated the ISS SoftWareARM (SWARM) [8] into our model.
SWARM provides cycle-accurate simulation of the ARM data path, in-
cludes a cache model and 12MB internal memory. SWARM additionally
includes peripherals for PIC, timer, LCD and UART controller [18].
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Figure 3. ARM7TDMI cycle-accurate model.

Our CA model (Figure 3)
contains the Core ISS behav-
ior, which replaces the Core
behavior of the BFM. In-
side the Core ISS, the behav-
ior ARM7TDMI ISS wraps
the SWARM ISS and calls
it cycle-by-cycle. The wrap-
ping behavior interfaces with
the remaining design through
bus accesses and interrupts.
It detects SWARM external
memory accesses and executes
them using the AMBA AHB master interface. It monitors the interrupt
inputs (nIRQ, nFIQ) and triggers an ISS-internal interrupt using the
SWARM API. The wrapping behavior advances the system’s simulated
time according to the ARM7 clock definition.

We disabled the SWARM internal PIC, timer and UART. Instead, we
reuse the PIC and timer of the BFM, which communicate through the
AHB. Upon startup, SWARM loads the target binary into the SWARM
internal memory (address zero), where the execution then starts from.

2.2 Real-Time Operating System
The designer may, in the refinement process, assign multiple behaviors

to one processor. Due to the inherently sequential execution, behaviors
then have to be either statically or dynamically scheduled. An RTOS is
needed on the target processor for dynamic scheduling.

We chose the µC/OS-II [19], which is a real-time kernel providing
preemptive priority-based scheduling for up to 56 tasks. It offers de-
terministic services for inter-task communication, synchronization and
timing. µC/OS-II, mostly implemented in ANSI C, is highly configurable
to reduce the footprint (down to 2K bytes [19]).

The RTOS requires porting to execute on top of the SWARM ISS (see
Figure 3). We based our processor adaptation on an available ARM port
[20], and adjusted for the gcc cross-compiler [14] in terms of stack layout,
data sizes and assembly code. We adapted context switch, interrupt
handling and timing functions.
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We use a two stage approach for the interrupt handling. The first
stage handler, OS CPU IRQ ISR(), is implemented in assembly. It saves
the context of the current task onto the stack, calls the second stage
handler, executes the OS scheduler and restores the new task’s context.
Its code is processor, compiler and OS dependent.

The second stage interrupt handler, implemented in C, performs the
communication with the PIC to determine and clear the interrupt in the
PIC, and then calls the user interrupt service routine. We chose this
multi-stage approach to limit the amount of highly specialized code.

The RTOS relies on a timer interrupt to provide timing services. Our
Hardware Abstraction Layer (HAL) contains a timer driver that con-
figures the timer. We chose a 10ms period trading off between timing
granularity and execution overhead.

2.3 Embedded Software Generation
The embedded software generation creates the final software imple-

mentation based on the design models. The generation process is em-
bedded into the system refinement flow as introduced in Figure 1.

The overall flow starts with an abstract specification model captured
in the SLDL SpecC [10]. Through step-wise refinement, the designer
adds design decisions and explores different alternatives.

tion to the PEs, selecting scheduling parameters, and defining commu-
nication parameters including the bus mapping.

One refinement output is a BFM of the entire system. In this model,
computation is mapped to processing elements [22], computation within
a processor is grouped to tasks (with priorities) [13], communication is
refined to bus primitives, and external synchronization is implemented
(e.g. polling or interrupt) based on the designer’s choice [25].

Our embedded software generation uses the BFM as an input and is
divided into the C-code synthesis and the RTOS targeting.

2.3.1 C-Code Synthesis. The C-code synthesis is based on
[26] and translates the SLDL statements into C-code. It resolves the
behavioral hierarchy, behavior local variables and the port mappings to
C constructs using functions, structures and pointers.

2.3.2 RTOS Targeting. RTOS targeting adapts the C-code
for execution on the target processor, scheduled by an RTOS. We use a
thin adapter, the RTOS Abstraction Layer (RAL). The RAL abstracts
from the actual RTOS implementation, providing a canonical interface.
RTOS targeting replaces SLDL statements for parallel execution into
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calls to the RAL. It also adapts intra-processor communication to use
RAL services. Figure 4 shows the resulting software stack.
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RTOS Abstraction Layer

Drivers

SW Application

Figure 4. SW stack.

Additionally, RTOS targeting realizes external
communication and synchronization. Most of the
external communication has already been refined
by earlier refinement steps [25] to use a canoni-
cal Media Access Control (MAC) layer, and can
be translated automatically by the C-code synthe-
sis. RTOS targeting only introduces a bus and
processor-specific MAC layer implementation.

In case of interrupt based synchronization, RTOS targeting extracts
the interrupt handlers from the simulation behaviors and creates user
interrupt handlers. It generates startup code that initializes the RTOS
and registers the user interrupt handlers to the system interrupt handler.

We have extended the refinement environment’s database segregating
the software subsystems by dependencies. This allows RTOS targeting
to flexibly compose the final binary while minimizing code duplication in
the database. We added the RTOS, RTOS-specific RAL, the RTOS port,
and the board-specific HAL (containing PIC, timer and MAC code).

In the final step, the generated code is cross-compiled using gcc [14]
and linked against the target and RTOS-specific libraries. This produces
the final target binary, ready for execution on the target processor.

3. EXPERIMENTAL RESULTS
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Figure 5. Anti-lock break example.

In order to show the feasibility of
our design flow, we applied it to an
example from the automotive domain.
We implemented an anti-lock break
system (see Figure 5). It uses one
Electronic Control Unit (ECU) con-
taining an ARM7TDMI, which ex-
ecutes the control application, and
a transducer connecting to the Con-
troller Area Network (CAN) [16]. Five
sensors and actuators are connected
through the CAN bus measuring the
break paddle position, wheel speed
and control the break pressure valve.

We captured this application as a specification model in SpecC [10]
and used the automatic refinement to generate the BFM inserting de-
sign decisions that yield the desired target architecture using the ear-
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lier described processor models. We then synthesised targeted C-code
using the extended software generation (see Section 2.3), creating an
executable binary for the ARM7TDMI processor. Using the ISS-based
model (Section 2.1.3), we co-simulate the complete system. This allows
us to validate the system and to analyze its performance in detail.
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Figure 6. Anti-lock break simulation.

We validated correct functional
execution of all created models us-
ing a simulated emergency stop ma-
neuver with an initial speed of 20
meters
second (45mph, 72km

h ). Figure 6
shows the correlation between the
break request (Break In), as read
from the break paddle, and the com-
puted break pressure Break Out as-
serted by the left valve actuator.
As the requested break pressure in-
creases, the left wheel loses traction
in this scenario. Then, the anti-lock

algorithm limits the asserted break power until sufficient traction is
achieved, at which point the pressure is increased again.

Please note that we automated the refinement process and scripted the
decision input. This allows us to develop code at the specification level
while all other models are generated automatically. As a result, we did
not have to deal with low-level implementation details and could focus
on algorithm design at a higher level, gaining productivity. Furthermore,
the automated refinement process allows us to generate all models within
minutes, which enables design space exploration (although not shown for
this example) and quick implementation turn around.

Model
Lines

of Code
Simulation

Time

Spec 238 0.018sec

TLM 22035 0.153sec

BFM 22048 125min

BFM(ISS)/C 22390/1416 208min

Table 1. Model complexity in lines of code
and simulation time.

To give an indicator of model
complexity, we measured exe-
cution times and lines of gen-
erated code. Table 1 summa-
rizes the results which show
that the execution time is neg-
ligible for the abstract models
up to the TLM [24]. Starting
with the BFM, the execution
time dramatically increases ex-
ceeding two hours. This demo application is not computation intense
and computation is spread over time. Most simulation effort is spent on
the idle bus systems. Both, the AHB (running at 25 MHz) and the CAN
(1 MHz) use explicit clocks. Especially the CAN contributes to a steep
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performance drop with a local clock in each node1. The ISS-based model
is 66% slower than the BFM. Simulating the ARM (25 Mhz) cycle-by-
cycle adds a significant overhead. Again, with the minimal computation,
the processor spends most cycles in the idle task.

Analyzing the lines of code shows that adding the abstract models (for
processor, bus and hardware components) significantly increases the size
showing the value of automatic model generation. Also, the final user
code of 1416 lines C code is much larger than the initial specification
model. Significant detail has been added throughout the generation
process for communication, task control and boiler plate code.

4. CONCLUSIONS
In this article, we have presented the software perspective of our

system-level design flow. In form of a ARM7TDMI based case study, we
described three major tasks necessary for software support in our flow.

First, we described the processor modeling at different abstraction
levels with the behavioral model for early exploration as our most ab-
stract model. We reported on the pin-accurate BFM and furthermore
showed the successful integration of an ARM7 ISS into a software cycle-
accurate model. Second, we discussed the adaptation of the µC/OS-II
to the ARM7 processor. Third, we reported on the embedded software
synthesis describing the RTOS targeting extension. We generate C code
for the selected RTOS and support internal communication, external
communication and synchronization.

Using an anti-lock break example, we have demonstrated the design
flow utilizing the three introduced SW support tasks. All generated
models, including the ISS-based model, simulate correctly, validating
our ability to automatically generate the final software implementation.
Using our automated refinement flow, a software developer will benefit
from describing the application at a higher level, where communication
details, processor specifics and RTOS API are hidden. Yet, the flow
produces the detailed implementation within minutes.
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