
SystemC Coding Guideline
for Faster Out-of-order Parallel Discrete Event Simulation

Zhongqi Cheng, Tim Schmidt, Rainer Dömer
Center for Embedded and Cyber-Physical Systems

University of California, Irvine, USA

Abstract—IEEE SystemC is one of the most popular standards
for system level design. With the Recoding Infrastructure for
SystemC (RISC), a SystemC model can be executed at segment
level in parallel. Although the parallel simulation is generally
faster than its sequential counterpart, any data conflict among
segments reduces the simulation speed significantly. In this paper,
we propose for RISC users a coding guideline that increases the
granularity of segments, so that the level of parallelism in the
design increases and higher simulation speed becomes possible.
Our experimental results show that a maximum speedup of over
6.0x is achieved on an 8-core processor, which is 1.7 times faster
than parallel simulation without the coding guideline.

I. INTRODUCTION

The IEEE SystemC standard [1] is widely used as a system
level design language for specification, validation and verifi-
cation of complex system-on-chip models. With the rapidly
growing complexity of embedded systems, a faster simulation
of SystemC models is of high demand to shorten the design
cycle.
The official proof-of-concept Accellera SystemC simulator [2]
is based on Discrete Event Simulation (DES), which executes
the SystemC model sequentially. This means that only one
thread is allowed to run at any time during the simulation.
Consequently, when running the Accellera SystemC simulator
on a modern multi- or many-core processor, all but one
cores remain idle and the parallel computation capabilities are
largely wasted.
Parallel Discrete Event Simulation (PDES) [3] has gained sig-
nificant attention because it can exploit the parallel computa-
tion power of modern processors and provide faster simulation.
However, regular PDES is synchronous. Earlier completed
simulation threads need to wait until all the other threads have
reached the same simulation cycle barrier to continue their
simulation. This strict total order still imposes a limitation on
high performance parallel simulation.
Out-of-order Parallel Discrete Event Simulation (OoO PDES)
[4] was proposed for a better utilization of the parallel com-
putation power. In OoO PDES, the simulation time is local
to each thread, and thus the global simulation cycle barrier is
removed. Independent threads can execute in parallel even if
they are in different time cycles.
The Recoding Infrastructure for SystemC (RISC) [5] provides
a dedicated SystemC compiler and an advanced OoO PDES
simulator for SystemC. RISC is available as an open-source
project and can be downloaded freely from the official website

[6]. Figure 1 shows the tool flow of RISC. The RISC compiler
is used as a frontend to process the input SystemC file.
It statically analyzes and derives a Segment Graph (SG)
representation of the model. Based on the SG, the compiler is
able to analyze data conflicts and event notifications among
segments, and it instruments the information as multiple
lookup tables into an intermediate model. This model is
then linked against the OoO PDES library to generate an
executable. During the simulation, every thread executes a
sequence of segments along a path over the segment graph.
The simulator dynamically checks the instrumented tables
to make correct thread dispatching decisions, preserving the
simulation semantics and timing accuracy.

Fig. 1. RISC Compiler and Simulator for OoO PDES of SystemC [5]

A. Related Work

Various approaches have been proposed to further improve
the simulation speed of OoO PDES. A segment aware thread
dispatching algorithm is studied in [7]. It takes into account
the execution time for a specific segment as a prediction of the
next run time, so that the dispatcher more accurately predicts
the run time of the thread segments ahead and makes better
dispatching decisions.
In [8], the authors extended the RISC compiler with the
Port Call Path (PCP) technique, which reduces false positive
conflicts in the channel analysis and significantly increases the
simulation speed.
PDES was also studied in [9]. The authors proposed a
conservative synchronous parallel simulation approach and
a SystemC framework to speedup tightly-coupled MPSoC
simulations on multi-core hosts.
In [10], the authors proposed an open-source framework called
systemc-clang for analyzing SystemC models with a mixture
of register-transfer level and transaction-level components.
In this paper, we propose a coding guideline for SystemC
users to build models with higher parallel potential that can be
executed faster by the OoO PDES simulator. Specifically, the978-1-5386-6418-6/18/$31.00 c©2018 IEEE

guideline suggests for users to insert extra wait statements
into the model, so as to increase the granularity of the SG.
With the finer granularity SG, variable and event conflicts
can be constrained into shorter segments, thereby reducing the
time of sequential execution, which is necessary, for example,
during communication between modules in the system.
Our contributions in this work are summarized as follows:
1: We propose a formal metric ψ to estimate the level of
parallelism of the model under OoO PDES.
2: We propose a coding guideline for the SystemC model
designers to optimize the model for faster simulation.
3: We demonstrate that the proposed coding guideline enables
significant speedup of OoO PDES.

II. SG GRANULARITY AND SIMULATION SPEED

In OoO PDES, models are simulated at segment level. As
shown in Figure 2, module M has two sc threads th1 and th2,
and a member variable a. f() and g() are data crunching
functions which work on local variables. The corresponding
SG is shown in Figure 3. Due to the data hazard over a, the
two segments are not allowed to run in parallel. Figure 4 shows
the scheduling of execution of the two sc threads.
By inserting two new wait statements into the sc threads, as
shown in Figure 5, the SG becomes Figure 6. In this model,
functions f() and g() are no longer in the same segment
of the statements that access the shared variable a. Because
f() and g() are conflict free, they can now be executed in
parallel as shown in Figure 7, which significantly speeds up
the simulation.
This leads to the conclusion that by increasing the granularity
of SG, more code statements can run in parallel, and conse-
quently increase the level of parallelism of a model and further
speedup the simulation.
In the following section, we will show more details to confirm
this idea and propose a coding guideline for the model designer
to increase the parallel potential of the SystemC models under
OoO PDES.

Fig. 2. Coarse Grained
Source Code

Fig. 3. SG of Fig. 2

Fig. 4. Scheduling of Fig. 2

III. RECODING INFRASTRUCTURE FOR SYSTEMC

The fundamentals about RISC [6] are reviewed in this
section for a better comprehension of the proposed coding

Fig. 5. Fine Grained
Source Code

Fig. 6. SG of Fig. 5

Fig. 7. Scheduling of Fig. 5

guideline.

A. Segment Graph

The SG is the foundation for both static analysis by the
RISC compiler and OoO PDES by the RISC simulator. It is
built on top of the Abstract Syntax Tree (AST) of the input
SystemC model.
A SG is a directed graph. Each node is called a segment, which
represents the code statements executed during the simulation
between two scheduling steps, i.e. the entry into the simulator
kernel due to a wait statement in SystemC. The edges in
SG represent the transition between segments. An example
of SystemC source code and corresponding SG is shown in
Figure 8 and Figure 9.
In this example, line 8 y++ and line 12 s=s*s could be

Fig. 8. Example Source
Code

Fig. 9. SG of Fig. 8

possibly executed in the same simulation cycle by a thread,
so they are put both into segment2. One statement may also
belong to multiple segments as it may occur on different
simulation cycles. Both segment 1 and 2 have s=s*s in the
above example. Note that a new segment starts only on wait
statements except for the first one. The first segment is the
entry point of a thread.

B. Data and Event Conflicts

The data conflict analysis takes place after the construction
of the SG. It is automatically performed by the RISC compiler.

Data conflicts between segments are caused by data hazards,
i.e., parallel or out-of-order accesses to shared variables. There
are three types of data hazards: Read-after-write (RAW), write-
after-write (WAW) and write-after-read (WAR). In the example
in Figure 3, segment 1 and 2 have data conflict due to the data
hazard over the variable s. The RISC compiler checks the data
conflicts between every pair of segments, and stores the result
in a Data Conflict Table (DCT). Figure 10 shows the DCT for
the example in Figure 8. The red box indicates a conflict, and
the blank ones mean conflict-free.
During the simulation, the OOO PDES simulator looks up the

Fig. 10. Data Conflict Table for Figure 8

data conflict table to make safe thread dispatching decisions. If
the segments of two ready-to-run threads have data conflicts,
the thread with an earlier timestamp is dispatched by the
scheduler. In general, segments with data conflicts are not
allowed to execute in parallel.
Event and timing conflicts are two other kinds of conflicts that
are taken care of in OoO PDES. They are analyzed in a similar
fashion as the data conflict. Details are described in depth in
[4], but omitted here for brevity.

IV. PROPOSED CODING GUIDELINE

In this section, we propose a new coding guideline for
the SystemC model designers to write SystemC models with
higher parallel simulation potential. Before describing the
guideline, we first define a metric to estimate the level of
parallelism of a SystemC model under OoO PDES.

A. Estimation for Level of Parallelism

The level of parallelism ψ is estimated as the amount of
code statement pairs that can potentially execute in parallel.
In OoO PDES, only code statements that belong to conflict-
free segments can run in parallel, and hence our estimation is
expressed as:

ψ =
∑
i

∑
j>i

thi 6=thj

HASNOCONFLICT(segi, segj) (1)

Where i and j are the index of code statements in the model.
segn is the segment that includes the nth code statement. And
similarly, thi is the thread that executes the nth code statement.
Each single thread executes sequentially, and code statement
i and j cannot execute in parallel if they belong to the same
thread. HASNOCONFLICT(segi,segj) returns 1 if segi and segj
are conflict free, otherwise it returns 0.

If two segments are in conflict, then any pair of code state-
ments that belong to the two segments are not allowed to
execute in parallel, which would reduce ψ. Thus, the larger ψ
is, the higher is the parallelism level of the input model.

B. Motivation

Our idea is motivated by the following observation:
Consider we have two segments: seg1 and seg2, which are
executed by two different threads. There are respectively p
and q statements in seg1 and seg2. ψ for this model is simply
ψ1 = p× q × HASNOCONFLICT(seg1, seg2).
Now, if a wait statement is inserted into seg1, such that
seg1 is partitioned into two non-overlapping segments: seg11
and seg12. After the partitioning, seg11 includes the first
p1 statements of seg1, and seg12 includes the other p2 =
p − p1 statements of seg1. ψ for the new model becomes
ψ2 = p1 × q × HASNOCONFLICT(seg11, seg2) + p2 × q ×
HASNOCONFLICT(seg12, seg2). seg11 and seg12 are executed
by the same thread, and hence they must run sequentially and
ψ2 does not increase.
When comparing ψ1 and ψ2, we get four different scenarios:

1) The conflict between seg1 and seg2 is only incurred
by certain statements in the first p1 statements of
seg1, and the last p2 statements are conflict free. This
indicates that HASNOCONFLICT(seg11, seg2) = 0,
HASNOCONFLICT(seg12, seg2) = 1 and
HASNOCONFLICT(seg1, seg2) = 0. Under this
scenario, ψ1 = 0 and ψ2 = p2 × q. ψ2 is larger than ψ1.

2) The conflict between seg1 and seg2 is only incurred
by certain statements in the last p2 statements of seg1,
and the other p1 statements are conflict free. This
indicates that HASNOCONFLICT(seg11, seg2) = 1,
HASNOCONFLICT(seg12, seg2) = 0 and
HASNOCONFLICT(seg1, seg2) = 0. Under this
scenario, ψ1 = 0 and ψ2 = p1 × q. ψ2 is larger than ψ1.

3) The conflict between seg1 and seg2 is incurred both
by certain statements in the first p1 statements
and the other p2 statements of seg1. This
indicates that HASNOCONFLICT(seg11, seg2) = 0,
HASNOCONFLICT(seg12, seg2) = 0 and
HASNOCONFLICT(seg1, seg2) = 0. Under this
scenario, ψ1 = 0 and ψ2 = 0. ψ2 is equal to ψ1.

4) seg1 and seg2 are conflict free. This indicates
that HASNOCONFLICT(seg11, seg2) = 1,
HASNOCONFLICT(seg12, seg2) = 1 and
HASNOCONFLICT(seg1, seg2) = 1. Under this
scenario, ψ1 = p× q and ψ2 = p1 × q+ p2 × q = p× q.
ψ2 is equal to ψ1.

The four scenarios suggest that
1) Partitioning a segment does not decrease the parallel

potential of a model.
2) If the user carefully selects the place to insert the

extra segment boundary, i.e., wait statement, ψ can
be increased significantly and results in a model with
higher parallelism level.

C. Overhead Consideration

One may deduce that it is always beneficial to insert as many
extra wait statements as possible, because by doing this the
ψ of the model keeps increasing. Although the deduction is
correct, it is not a good practice.
Each extra wait statement will increase the number of
segments in the segment graph by one. And the size of conflict
tables is to the square of the segment count. Thus, if too many
extra wait statements are inserted, the time cost for static
analysis and dynamic checking will grow significantly, which
would rather decrease the simulation performance. Besides,
too many extra wait statements may also make the model
incomprehensible.
Last but not least, each new wait statement creates an extra
scheduler entry point into the simulator kernel which incurs
significant overhead.

D. Suggestions

Motivated by the above observations and considerations,
we propose the following suggestions for the SystemC model
designers to properly place extra wait statements in the
source code, so as to increase the parallel potential of the
model under OoO PDES.

1) use the wait-for-delta-cycle primitive as the extra seg-
ment boundary: There are six different kinds of wait prim-
itives in the SystemC standard [1]:

1) wait() : Wait for the sensitivity list event to occur.
2) wait(int) : Wait for n clock cycles in SC CTHREAD.
3) wait(event) : Wait for the event mentioned as parameter

to occur.
4) wait(double,sc time unit) : Wait for specified time.
5) wait(double,sc time unit, event) : Wait for specified

time or event to occur.
6) wait(SC ZERO TIME): Wait for one delta cycle.

The event related wait primitives shall not be used because
they require proper events to be notified. For the wait-for-
time primitive, it is likely to change the simulation time cycle,
which is not desirable. Thus, in order to maintain the semantics
and timing accuracy of the original SystemC model, we
suggest to the designers to use wait-for-delta-cycle primitive,
i.e., wait(SC ZERO TIME) as extra segment boundaries. 1

2) Partition the heavy segments: As mentioned in Section
IV-C, the cost for one extra wait statement is independent of
where it is inserted. Thus, in order to maximize the gain of ψ
of the model, we suggest the users to partition computational
intensive segments, which we refer to as heavy segments.
Unfortunately, it is not obvious to identify heavy segments
directly from the model code. However, the RISC compiler
is able to dump the statically generated SG and the DCT
into files by turning on the -risc:dump command line
option. The SG is then dumped into a .dot file which can be
viewed graphically using the xdot.py tool. Also, the DCT is

1Note that the timing accuracy of a robust model will not be affected by
extra delta cycles.

dumped into an HTML file which the designer can easily view
in any browser. An example SystemC source code is shown
in Figure 11. The dumped SG and DCT are shown in Figure
12 and Figure 13. The level of parallelism ψ for this model
is ψ1 = 6 + 5 = 11
From the SG, it is apparent that segment 1 and segment 3
are heavy segments which both contain loops. In order to
increase the parallelism level of the model, we wish to partition
the conflict-free statements from the conflicting ones in the
segment, as described in the first and second scenarios in the
previous section. To locate the conflicting statement, the user
can refer to the dumped Data Conflict Table. In the ((1,0),(3,0))
entry of the table, it shows that the data conflict is over the
variable M::c, and so the conflict is between statement line
8 and 17 in Figure 112. In this example, the conflicting state-
ments are not inside the computationally intensive code pieces,
that are, the for loops. So we can partition the segments by
inserting wait statements after line 9 and 18. The optimized
model is shown in Figure 14. The dumped SG and DCT
are shown in Figure 15 and Figure 16. Now, the level of
parallelism ψ becomes ψ2 = 6+5+4× 6 = 35. The parallel
potential is further intensified during the simulation due to the
two conflict free for loops.

V. EXPERIMENTS AND RESULTS

We have applied the proposed coding guideline to several
SystemC model examples. We first tested it on the synthetic
benchmarks generated by the TGFF tool to validate the
effectiveness of our coding guideline. Then, we evaluate the
guideline with two real world designs, Canny Edge Detector
and Audio/Video Decoder, to demonstrate the performance.
The experiments are performed on an Intel E3-1240 host
machine, which has a total of 8 cores (4 cores with 2-way
hyperthreading each). The CPU frequency scaling is turned
off so as to obtain repeatable results.

A. TGFF benchmarks

We first examine the performance of the proposed coding
guideline on a synthetic benchmark, which is automatically
generated by the TGFF tool with SystemC extension [7].
Figure 17 shows the data flow block diagram of the generated
model. It has a source and a sink, and multiple parallel lanes
of nodes in between. Figure 18 shows the source code for each
node. Each node module first gets an input from a channel, and
then does data crunching which is computationally intensive.
The data crunching accesses only local variables and thus
is conflict-free. After the computation the module outputs
the result to another channel. In such model, data conflicts
are incurred only by channel communications, which are
caused by the parallel accesses to the shared variables in
the channels. To optimize the model, we apply the proposed
coding guideline and put wait(SC ZERO TIME) statements
around the data crunching parts. The source code for the
optimized module is shown in Figure 19.

2The instance id is shown here, which is not of interest in this paper

Fig. 11. Source Code for
Module M

Fig. 12. SG for Figure 11

Fig. 13. DCT for Figure 11

Fig. 14. Source Code for
Module M after partition-
ing

Fig. 15. SG for Figure 14

Fig. 16. DCT for Figure 14

Fig. 17. Block Diagram of TGFF Models

Fig. 18. Original Source Code of
Generated Testbench Model

Fig. 19. Optimized Source Code
of Generated Testbench Model

Through a parameter to the TGFF generator, we are able to
control the total number of lanes as well as nodes per lane, and
each lane may consist of various number of nodes. The data
crunching workload of each node is controlled by the number

TABLE I
PERFORMANCE OF TGFF BENCHMARKS, SIMULATOR RUN TIMES[SEC]

AND CPU UTILIZATION

Benchmark SEQ PAR GDL
1 63.55 (99%) 17.85 (377%) 10.48 (690%)
2 63.54 (99%) 17.63 (379%) 10.91 (663%)
3 134.41 (99%) 88.41 (155%) 81.55 (172%)
4 349.86 (99%) 165.41 (214%) 93.44 (400%)
5 493.02 (99%) 169.12 (301%) 99.17(552%)
6 134.40 (99%) 92.00 (155%) 81.10 (173%)

average 206.46 (99%) 91.74 (263.5%) 62.77 (441%)

of iterations of the for loop.
We studied 6 test cases with different data flow configurations
in this experiment. Table I shows the performance of the
simulations before and after applying the coding guideline.
The first column SEQ refers to the sequential simulation
with the reference Accellera SystemC simulator. Under the
sequential simulation, the CPU utilization is always below
100% because only one thread is running at any time during
the simulation. The second column PAR refers to the OoO
PDES before applying the coding guideline. It shows that on
average, the simulation of the original models is 2.3x faster
than SEQ. The third column GDL refers to the OoO PDES
after applying the coding guideline. It is 3.2x faster than
SEQ, and 1.4x faster than PAR. For the first benchmark, GDL
achieved a maximum speedup of 1.7x over PAR, and the latter
one is 3.5x faster than SEQ. Note that the CPU utilization is
larger than the speedup over SEQ. This is because in OoO
PDES there is some overhead for checking conflict tables. The

results confirm that our coding guideline can be very effective
in achieving higher speedup under OoO PDES.
B. Real world examples

We then evaluate the proposed coding guideline with two
real world examples, namely Canny Edge Detector and Au-
dio/Video Decoder modeled similarly to the benchmarks used
in [7] and [8].

1) Canny Edge Detector: Our first real world example is
the Canny edge detector, which filters edges in an image.
The edge detector is a structurally five-stage pipeline, and
each stage has a communication-computation-communication
code structure. Communication between two pipeline
stages is via a user-defined channel in which the read and
write functions access the shared channel variable. In this
experiment, a sequence of 20 images is fed into the pipeline
and correspondingly generates 20 outputs. The outputs are
verified to ensure a correct simulation.
Table II shows the simulation time and CPU utilization
before and after applying the coding guideline. By using
the original model, a CPU utilization of 127% is achieved,
which is due to the conflicts among communications. With
the optimized model, the CPU utilization is increased to
149%, and the OoO PDES speed is increased by 1.2x. The
speedup is not as impressive as in the TGFF test cases. This
is because the workload of each pipeline stage varies greatly,
and the bottleneck of the simulation speed is determined by
the longest stage. However, this experiment still confirms the
effectiveness of the proposed coding guideline.

TABLE II
PERFORMANCE OF CANNY EDGE DETECTOR

SEQ PAR GDL
simulation time (sec) 24.85 19.96 17.23

CPU utilization 100% 127% 149%
speedup 1.00 1.24 1.44

C. A/V decoder

The second real world test case is an Audio/Video decoder.
The model structure is shown in Figure 20. The stimulus
sends the encoded stream to one video decoder and the left
and right audio decoders. Then, the video decoder outputs
the result to a monitor, and the audio decoders output the
results to two speakers. The results for this test case are
shown in Table III. The execution times cost for OoO PDES
before and after applying the coding guideline are 48.24 secs
and 26.67 secs, which suggest the optimized model executes
1.8x faster. The speedup is reasonable because the encoding
and decoding stages have similar computation loads. The
result again confirms the effectiveness of the proposed coding
guideline.

VI. CONCLUSION

In this paper, we proposed a coding guideline for the
SystemC model designers who use OoO PDES parallel execu-
tion enabled by the Recoding Infrastructure for SystemC. By
applying the coding guideline, the granularity of the Segment
Graph becomes larger, and thus results in a faster execution

Fig. 20. Block Diagram of Audio/Video Decoder

TABLE III
PERFORMANCE OF AUDIO/VIDEO DECODER

SEQ PAR GDL
simulation time (sec) 73.41 48.24 26.67

CPU utilization 100% 152% 247%
speedup 1.00 1.52 2.75

speed. Our experiments show that by applying the proposed
coding guideline, the optimized SystemC model is able to
achieve a speedup of up to 1.7x on a 8 core machine, on
top of the 3.5x speedup due to PDES.
For future work, we plan to develop a technique that auto-
matically identifies heavy segments and applies the coding
guideline automatically.

ACKNOWLEDGEMENTS

This work has been supported in part by substantial funding from Intel
Corporation for the project titled ”Scaling the Recoding Infrastructure for
Parallel SystemC Simulation”. The authors thank Intel Corporation for the
valuable support.

REFERENCES

[1] IEEE Standard 1666-2011 for Standard SystemC R© Language Reference
Manual, IEEE Computer Society, January 2012.

[2] SystemC Language Working Group. SystemC 2.3.1, Core SystemC Lan-
guage and Examples, Accellera Systems Initiative. [Online]. Available:
http://accellera.org/downloads/standards/systemc, 2014

[3] R. Fujimoto. Parallel discrete event simulation. Commun. ACM, 33:3053,
Oct. 1990.

[4] W. Chen, X. Han, C. W. Chang, G. Liu, and R. Dömer. Out-of-
Order Parallel Discrete Event Simulation for Transaction Level Models.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 33(12):1859-1872, 2014.

[5] Dömer R., Liu G., Schmidt T. Parallel Simulation. In: Ha S., Teich J. (eds)
Handbook of Hardware/Software Codesign. Springer, Dordrecht, 2016

[6] Lab for Embedded Computer Systems (LECS). Recoding Infras-
tructure for SystemC [Online]. Available: www.cecs.uci.edu/ doe-
mer/risc.html#RISC042

[7] G. Liu, T. Schmidt, R. Dömer: ”A Segment-Aware Multi-Core Scheduler
for SystemC PDES”, Proceedings of the International High Level Design
Validation and Test Workshop, Santa Cruz, California, October 2016.

[8] T. Schmidt, Z. Cheng, R. Dömer: ”Port Call Path Sensitive Conflict
Analysis for Instance-Aware Parallel SystemC Simulation”, Proceedings
of Design, Automation and Test in Europe, Dresden, Germany, March
2018.

[9] C. Schumacher, R. Leupers, D. Petras, and A. Hoffmann, parSC: Syn-
chronous Parallel SystemC Simulation on Multi-Core Host Architectures,
in Proceedings of the International Conference on Hardware/Software
Codesign and System Synthesis , pp. 241246, 2010

[10] Kaushik A, Patel HD SystemC-clang: an open-source framework for
analyzing mixed-abstraction SystemC models. Proceedings of the forum
on specification and design languages (FDL), Paris, 2013

