
Center for Embedded and Cyber-Physical Systems
University of California, Irvine

A Tool to Flatten Multi-File SystemC Models for the RISC
compiler

Yutong Wang, Rainer Dömer

Technical Report CECS TR 21-01
March 1, 2021

Center for Embedded and Cyber-Physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

(949) 824-8919

yutongw5@uci.edu
http://www.cecs.uci.edu

yutongw5@uci.edu
http://www.cecs.uci.edu

A Tool to Flatten Multi-File SystemC Models for the RISC
compiler

Yutong Wang, Rainer Dömer

Technical Report CECS TR 21-01
March 1, 2021

Center for Embedded and Cyber-Physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

(949) 824-8919

yutongw5@uci.edu
http://www.cecs.uci.edu

Abstract

The Recoding Infrastructure for SystemC (RISC) uses a dedicated SystemC compiler for aggressive yet
standard compliant parallel simulation capable of out-of-order execution on many-core platforms. One of
the known shortcomings of the current RISC compiler version 0.6.2 is handling multiple source files. While
having separated source files is fairly standard practice, when modeling complex embedded systems, the
compiler needs to combine all source files in the correct order to function properly. In this report, we intro-
duce a tool flatten which solves the multiple source file problem by examining the inclusion hierarchy of the
source files and combining all sources into one flattened file. This report describes the development stages,
the usage as well as the future development goal of flatten. This report also includes several representative
examples and shows how flatten handles them.

yutongw5@uci.edu
http://www.cecs.uci.edu

Contents
1 Introduction 1

1.1 Problem definition . 1
1.2 Related work . 2

2 Features 2
2.1 Compatibility with multiple SystemC file extension . 2
2.2 Separation of library inclusion and user file inclusion . 2
2.3 Detail display and debug mode . 3
2.4 Draw inclusion hierarchy . 4

3 Command Line Options 5
3.1 Available Arguments . 5

4 Experiments and Results 7
4.1 Table of Examples . 7
4.2 Examples in Detail . 8

5 Conclusion and Future Work 13

References 14

A Appendix 15

ii

A Tool to Flatten Multi-File SystemC Models for the RISC compiler

Y. Wang, R. Dömer
Center for Embedded and Cyber-Physical Systems

University of California, Irvine
Irvine, CA 92697-2620, USA

yutongw5@cecs.uci.edu
http://www.cecs.uci.edu

Abstract
The Recoding Infrastructure for SystemC (RISC) uses a dedicated SystemC compiler for aggressive yet stan-
dard compliant parallel simulation capable of out-of-order execution on many-core platforms. One of the
known shortcomings of the current RISC compiler version 0.6.2 is handling multiple source files. While hav-
ing separated source files is fairly standard practice, when modeling complex embedded systems, the compiler
needs to combine all source files in the correct order to function properly. In this report, we introduce a tool
flatten which solves the multiple source file problem by examining the inclusion hierarchy of the source files
and combining all sources into one flattened file. This report describes the development stages, the usage as
well as the future development goal of flatten. This report also includes several representative examples and
shows how flatten handles them.

1 Introduction
Flatten is developed using Python3 [1] as one of the pre-built tools of the RISC [2][3] version 0.6.3 release.
Flatten is designed to solve one of the known limitations of RISC compiler: it does not work well with
separate source files. Prior to the release of the script, RISC users need to manually combine their source
files in the correct order. While it is easy to do for simple SystemC designs, large designs with numbers
of source files and complex file hierarchies are a burden for system designers to flatten manually. Although
Python3 is needed in the user’s system, flatten is overall easy to setup and use. Installing the RISC compiler
will automatically configure this tool, the user can then simply call flatten command to execute the script.

1.1 Problem definition
As mentioned in the abstract, RISC uses a custom SystemC [4] compiler for aggressive yet standard com-
pliant parallel simulation on multi-core systems to speed up otherwise slow SystemC compilation. One of
the known limitations that flatten is aiming to bypass is introduced in the version 0.4.0 technical report of
RISC (see section 3.4 for more detailed explanation) [5]. The RISC shortcoming is related to source code
instrumentation: the RISC compiler only works if it has access to the entire source code of the design model.
While RISC compiler can deal with smaller SystemC projects which usually have simpler file hierarchies and
small number of libraries and source files, it has difficulty to compile complex SystemC models.

1

yutongw5@cecs.uci.edu
http://www.cecs.uci.edu

1.2 Related work
RISC compiler version 0.5.0 [6] introduced a different solution than flatten, which is Partial Segment Graph
(PSG) [7]. PSG is implemented to solve the aforementioned limitation on multi-file inputs and hierarchical
file structures by representing the behavior model of each separate translation unit (multiple source files).
PSG can then be combined to construct a complete Segment Graph (SG) for the input model. For detailed
information on how RISC uses SG to construct the model, please refer to the RISC 0.5.0 report [6]. With the
help of PSG, RISC compiler is able to properly compile the model without the need to manually edit each
source file. However, in order to deal with uncertainty in the abstract syntax tree (AST), PSGs are separated
into three types and they are constructed by the Intellectual Property (IP) provider [6]. In the case of missing
PSG support, the RISC compiler faces the same limitation introduced in version 0.4.0..

Using PSG is rather complex and cumbersome to handle for the designer. Flatten on the other hand, offers
a simpler, easy-to-use solution that supports a range of SystemC file extensions and different file hierarchies.

2 Features
Flatten has many built-in features including support for multiple SystemC file extensions, automatic main
file detection and detecting of file hierarchy. More detail can be found later in this report. A list of arguments
is also included in this report as well as examples that demonstrate all features. The current version of flatten
is capable of combining SystemC source files in the correct order with simple commands. The output file can
be directly compiled with regular g++ compiler or RISC, assuming source files have no compatibility issue
with each compiler.

2.1 Compatibility with multiple SystemC file extension
SystemC source files have many file extensions. Suffixes “.cc”, “.cpp”, “.h”, “.hpp”, and “.C” are all sup-
ported by a SystemC compiler and therefore flatten needs to be compatible with all of the aforementioned
file extensions. To achieve that, flatten does not use hard-coded file extensions to detect files. Instead, it will
read the user specified input file and use the file’s inclusion statements to determine the correct file extension
for the source files. An example with multiple file extensions is shown below in Figure 1.

[user]:> flatten -i testfile1.cc
User input name for main, the path is: /testfolder/testfile1.cc
---DONE FLATTENING---
[user]:> flatten -i testfile1.C
User input name for main, the path is: /testfolder/testfile1.C
---DONE FLATTENING---
[user]:> flatten -i testfile1.cpp
User input name for main, the path is: /testfolder/testfile1.cpp
---DONE FLATTENING---

Figure 1: Flatten0 can take multiple SystemC suffixes

2.2 Separation of library inclusion and user file inclusion
When flatten combines multiple source files, it will scan for preprocessor included directives and then com-
pare the inclusion statement with the collected file information to determine whether the included header file
or source file is a standard library or a user file. In the case of a C/C++ standard library file, all of such

2

inclusion statements from different files will be moved to the top of the output file. In the case of user files,
such inclusion statements will be taken out.
An example with different inclusion statements is shown below in Figure 2.

//testfile1.cc
#include <iostream> \\standard library
#include <testfile2.cc>
#include <anyuserheader.h>
[code in testfile1.cc]

//output.cc
#include <iostream>\\standard library
[code in anyuserheader.h]
[code in testfile2.cc]
[code in testfile1.cc]

Figure 2: Flatten will take out user file inclusion and keep system library at top

2.3 Detail display and debug mode
Detail display and debug mode were added in case of the output file is not compilable or incorrectly flattened,
flatten uses arguments -v and -d to play detailed and debug information respectively. At its current develop-
ment stage, the -v option displays a list of included system libraries, a list of included SystemC header files
and a list of SystemC implementation files. The -d option displays internal data structure used to store file
hierarchical information, internal flags and path variables in addition to what -v displays. While the debug
mode will give more information to help identify problems, turning it on sometimes displays a large amount
of text for a large project. Therefore it is recommended to use the graphic option plus detail display mode (-g
and -v) to view a more intuitive representation for the inclusion hierarchy of the user’s project.
An example with debug mode on is shown below in Figure 3.

3

[user]:> flatten -i testfile1.cc -v
User input name for main, the path is: /testfolder/testfile1.cc
SYSTEM INCLUSION:{ #include <systeminclusion>}
H FILES:’headerfiles1.h’,’headerfiles2.h’
C FILES:’testfile1.cc’,’testfile2.cc’
---DONE FLATTENING---

[user]:> flatten -i testfile1.cc -d
User input name for main, the path is: /testfolder/testfile1.cc
FOUND USER INPUT!
HAS MAIN = True
PATH2MAIN = /testfolder/testfile1.cc/
PATH2FOLDER = /testfolder/
SYSTEM INCLUSION:{ #include <systeminclusion>}
H FILES:’headerfiles1.h’,’headerfiles2.h’
C FILES:’testfile1.cc’,’testfile2.cc’
[internal data structure]
testfile1.cc level 0 Parent: None
testfile2.cc level 1 Parent: testfile1.cc
...
---DONE FLATTENING---

Figure 3: Flatten script with detail display mode on and debug mode on

2.4 Draw inclusion hierarchy
Flatten will read all files under the user current path using the Python3’s OS library, then build a list of each
file and path to get to them. From each file and their inclusions, flatten can then build a directed graph which
the nodes are files and edges are the inclusion relationship. From there, flatten will run a modified version
of depth first search algorithm and generate a tree of files. Then the script reverse traverses the tree to print
out the files in the correct order. By using the -g argument, the script will display the depth and inclusion
information of the files. An example with the graph option on is shown below in Figure 4.

[user]:> flatten -i testfile1.cc -g
User input name for main, the path is: /testfolder/testfile1.cc
---DONE FLATTENING---
-------GRAPH-------
NOTICE: ALL the C files are still printed in the correct order
though they are not shown in the graph

|--------testfile1.cc
|--------testfile1.h

|--------testfile2.h
|--------testfile3.h

|--------testfile4.h
|--------testfile5.h

Figure 4: Flatten script with -g displays the file hierarchy in shell

4

3 Command Line Options
Flatten is a tool designed to generate a compilable file for the RISC compiler. It takes multiple source files
from the user based on the inclusion in each file and outputs a single combined source file in the correct order.

Flatten includes 7 command line options to provide necessary functionalities and to offer better user
experience. These command line options include a help page, specification of input and output file names,
showing detailed information, displaying debug information and graph for the inclusion hierarchy, and option
to execute an auto-compile command after flatten, which is currently under development.
Detailed explanation and example is shown below.

3.1 Available Arguments
1. No arguments: If no argument is provided, the script will scan each file and sub-directory in the

current path for a SystemC sc main function to identify the main file. If the main file is found, then
the script would execute without any arguments automatically. When no main file is found, the script
would display the following message and then asks for a manual input.

ERROR: input file not found, exiting....

In the case of finding multiple sc main function, which is possible since one large project might contain
multiple independent models, the script would display the following message to notify the user to
switch to manual input instead.

----Found multiple files containting name main or Main,
exiting....Please use manual input----

2. Display help using -h argument: user can add this argument to see a full list of available arguments
and a line of brief explanation for each argument. The script will only display help messages upon
seeing this argument and ignores the rest of the input. This is implemented to protect user from unin-
tentional use and accidentally overwrite important files. The help message is shown below and is also
included in the Appendix A at the end of this report.
An example is shown below:

>flatten -h
User Help:
use -v argument to show included files
use -g argument to show graph(tree) of file dependency
use -x argument to auto compile the flattened file using RISC
use -i [input] argument to indicate the main file, no need to input
multiple files
use -o [output] argument to change the name of output file, if not
default to Main_flat.cpp
use -d argument to enter debug mode

3. Display detailed information using -v argument: user can add this argument to see detailed infor-
mation after flatten is executed. Detailed information includes: a list of system inclusions, a list of
included SystemC header files and a list of included SystemC implementation files. This argument is
useful for users who want to check whether all necessary files are successfully included and it is best
paired with the -g option to get a clear understanding of the file inclusions.
An example is shown below:

5

>flatten -v
SYSTEM_INCLUSION: [systemincludeions]
H_FILES: [headerfiles]
C_FILES: [implementation files]

4. Display a text based graph using -g argument: user can add this argument to see a tree of included
files using characters. The graph contains information including the root of the graph (usually the main
file), the depth information of the included file, and parent information of each included file. The depth
information indicates the distance from the root file to that file and parent information indicates where
that file is referred from. In the case of a large and complex SystemC model, the tree could get very
large and it is better to pair this argument with the -v argument to make sure that the necessary files are
included and flattened correctly.
An example is shown below:

>flatten -g
-----GRAPH-----
|--------Main

|--------first_level_file
|--------second_level_files
|--------second_level_files
|--------second_level_files
|--------second_level_files

|--------third_level_files
|--------third_level_files

5. Use argument -x to compile flattened file: user can use this argument to compile and execute the
flattened file immediately after flatten. Since the RISC compiler may not support all SystemC and
custom libraries and user might also add custom flags while compiling, this argument is currently
disabled in the script and is part of the future development plan of flatten.

6. Specify input file name using -i [input]: user can use this argument to indicate the name of the main
file. This argument is not required to use the script but it is recommended, since the script could detect
multiple main files by accident or detect no main files at all. Notice that to use this argument the user
needs to input the complete name of the file. In addition, it is not required to input the absolute path to
the file.
An example is given below:

>flatten -i custom_name.cc
-----DONE FLATTENING-----

7. Specify output file name using -o [output]: user can use this argument to indicate the name of the
output file. This argument is not required to use the script but it is recommended since the script by
default write to Main flat with the same file extension as the main file, it is possible to overwrite other
documents.
An example is given below:

>flatten -o custom_name.cc
-----DONE FLATTENING-----

6

8. Display debug information using -d argument: user can use this argument to see debug informa-
tion. Similar to the -v argument for displaying detailed information, -d provides even more detailed
information. In addition to a list of system inclusions, a list of included SystemC header files and a
list of included SystemC implementation files, adding the debug argument will also make the script
display internal flags, path variables, and the data structure used to store the graph. Notice that when
the SystemC model is large and contains many source files, turning on debug mode might result in
large amount of text, using the -v argument might be the better choice.
An example is given below:

>flatten -d
HAS_MIN_FLAG = [T/F]
PATH_VARIABLES = [path_to_main/folder]
SYSTEM_INCLUSION: [systemincludeions]
H_FILES: [headerfiles]
C_FILES: [implementation files]
INTERNAL_DATA: [print_doubly_linked_list]

4 Experiments and Results
In Section 2 of this report, examples used are very ideal and standard, using such test bench and is not enough
to cover many real-life scenarios. Therefore, this section will show few experiments on SystemC models from
both industry and academia. These models are fair representations of real-life SystemC models even though
some of the detailed information are hidden due to privacy restrictions.

4.1 Table of Examples
Table 1 below contains 8 examples from both industry and academia. These examples covers a broad range
of scenarios with different number of files, inclusion depths, libraries used and file extensions. Although
flatten supports many forms of input, it still has trouble handling certain type of projects. In addition, some
examples can be flattened and compiled with RISC or g++ compiler successfully while others need to be
modified in order to compile by either compiler. Details of each example are shown in Subsection 4.2.

7

List of Examples
Example Source Number

of Files
Flatten
Result

Compile
with g++

Compile
with
RISC

Comments

1 ProdsCons Industry1 13 Success No No Missing library on
host system

2 SysC Industry1 1 Success Yes No, needs
more
modifica-
tions

RISC error: cannot
handle certain mod-
ule

3 TBM Industry1 Unknown N/A N/A N/A Provided files are en-
crypted

4 SystemC
Tester

Industry2 11 Success Yes No, needs
more
modifica-
tion

RISC error: segmen-
tation fault

5 Jpeg encoder UCI 22 Success Yes Yes No additional modi-
fication needed

6 canny UCI 43 Success Yes Yes* RISC executable
failed to run cor-
rectly

7 skunk UCI 5 Fail N/A N/A Project uses python
scripts to generate
source code

8 png encoder UCI 14 Success Yes* No minor modification:
delete 2 lines to make
g++ work

Table 1: Application examples and experimental results

4.2 Examples in Detail
1. ProdsCons from Industry1: Shell output is shown in Figure 5 below. The output file has been verified

to contain all 13 files in 3 separate folders (source and header folder) and the reason g++ and risc
compiler fail is due to one library file missing from the host machine. In other words, flatten did
work properly and the output file should compile in machines with necessary packages installed. This
project uses standard file extensions “.cpp” and “.h” which are supported by the tool. Flatten is also
able handle multiple folder for libraries in different paths.

8

[user]:> flatten -i cfm prod cons top.cpp -o test.cpp -v -g
User input name for main, the path is: /ProdCons forUCI/Prod
Cons forUCI/risc test/risc test/gen-sysc/prod cons/src/cfm prod
cons top.cpp
SYSTEM INCLUSION: {’#include "dt/cft defchar.h\,’#include
"cofluent.h"}
H FILES: [’cft defchar.h’,’cfm prod cons global.h’,
’cfm consumer.h’, ’cfm producer.h’, ’cfm prod cons user.h’,
’cfm prod cons.h’, ’cfm prod cons top.h’]
C FILES: [’cfm consumer.cpp’, ’cfm producer.cpp’,’cfm prod cons use
r.cpp’, ’cfm prod cons user.cpp’, ’cfm prod cons.cpp’,
’cfm prod cons top.cpp’]
---DONE FLATTENING---
---------GRAPH----------
NOTICE: ALL the C files are still printed in the correct order
though they are not shown in the graph
|--------cfm prod cons top.cpp

|--------cfm prod cons top.h
|--------cfm prod cons user.h

|--------cfm prod cons global.h
|--------cfm prod cons.h

|--------cfm consumer.h
|--------cft defchar.h

|--------cfm producer.h
|--------cft defchar.h

|--------cft defchar.h

Figure 5: Flatten script output on Industry1 ProdsCons example with -v and -g flag

2. SysC from Industry1: Shell output is shown in Figure 6 below. Since the input file has only 1 file
and it uses supported file extension, it is easy to verify the output. This project is an unusual scenario
since it has only one source file, but flatten can handle this type of input with no issue. While the
flattened output can be compiled with g++, RISC does not support one of the internal modules. Which
will require manual modifications to work around RISC compiler limitations.

9

[user]:> flatten -i prodcons.cpp -o test.cpp -v -g
User input name for main, the path is: SysC forUCI/sc prod cons/
src/prodcons.cpp
SYSTEM INCLUSION: {’ #include <systemc.h>’}
H FILES: []
C FILES: [’prodcons.cpp’]
---DONE FLATTENING---
---------GRAPH----------
NOTICE: ALL the C files are still printed in the correct order
though they are not shown in the graph
|--------prodcons.cpp

Figure 6: Flatten script output on Industry1 SysC example with -v and -g flag

3. TBM from Industry1: We were not able to test this example because the file archive is encrypted.

4. SystemC Tester from Industry2: The shell output is shown in Figure 7. The output file has been ver-
ified to contain all SystemC header files and implementation files in the correct order. In this example,
the naming scheme for SystemC source files are fairly standard (“.cpp” and “.hpp”) and the inclusion
hierarchy is also simple. While the g++ compiler is able to compile the flattened source file with no
issue, modifications on the included libraries are needed for RISC compiler to work properly.

[user]:> flatten -i Main.cpp -o Main flat.cpp -v -g
User input name for main, the path is: /SystemC Tester
/source/Main.cpp
SYSTEM INCLUSION: {’#include "tlm.h"’,’#include
"tlm utils/simple initiator socket.h"’, ’#include
"tlm utils/simple target socket.h"’,’#include <stdint.h>’}
H FILES: [‘AddressMap.hpp’, ‘SimpleMem.hpp’, ‘SimpleTimer.hpp’,
‘SimpleTop.hpp’, ‘Interconnect.hpp’]
C FILES: [‘SimpleMem.cpp’, ‘SimpleTimer.cpp’, ‘SimpleTop.cpp’,
‘Interconnect.cpp’, ‘Main.cpp’]
---DONE FLATTENING---
---------GRAPH----------
NOTICE: ALL the C files are still printed in the correct order
though they are not shown in the graph

|--------Main.cpp
|--------SimpleMem.hpp
|--------SimpleTimer.hpp
|--------SimpleTop.hpp
|--------Interconnect.hpp

|--------AddressMap.hpp

Figure 7: Flatten script output on Industry2 SystemC Tester example with -v and -g flag

5. Jpeg Encoder Model from UCI: The shell output is shown in Figure 8, part of the graph is omitted
because the inclusion tree is too long to fit in a single figure. Output file has been verified to contain

10

all SystemC header files and implementation files in the correct order. In this example there are files
with depth level of 6, which means the script successfully transversed the file hierarchy even though
it is complicated. Both g++ compiler and RISC compiler compiled the flattened source code without
error, the executables are also verified to be working correctly.

[user]:> flatten -i jpeg.cc -o Main flat.cpp -v -g
User input name for main, the path is: /jpeg encoder/jpeg.cc
SYSTEM INCLUSION: {’#include "systemc.h"’}
H FILES: [’dct.h’, ’quantize.h’, ’zigzag.h’, ’config.h’,
’rgb2ycc.h’, ’encoder.h’, ’huffman.h’, ’types.h’, ’stimulus.h’,
’dut.h’, ’monitor.h’, ’jpeg.h’]
C FILES: [’dct.cc’, ’quantize.cc’, ’zigzag.cc’, ’rgb2ycc.cc’,
’encoder.cc’, ’huffman.cc’, ’stimulus.cc’, ’dut.cc’,
’monitor.cc’, ’jpeg.cc’]
---DONE FLATTENING---
---------GRAPH----------
NOTICE: ALL the C files are still printed in the correct order
though they are not shown in the graph

|--------jpeg.cc <-(None)
|--------jpeg.h <-(jpeg.cc)

|--------types.h <-(jpeg.h)
|--------config.h <-(types.h)

|--------stimulus.h <-(jpeg.h)
|--------types.h <-(types.h)

|--------config.h <-(types.h)
|--------dut.h <-(jpeg.h)

|--------types.h <-(types.h)
......

|--------types.h <-(types.h)
|--------config.h <-(types.h)

|--------zigzag.h <-(encoder.h)
|--------types.h <-(types.h)

|--------config.h <-(types.h)
|--------huffman.h <-(dut.h)

|--------types.h <-(types.h)
|--------config.h <-(types.h)

|--------monitor.h <-(jpeg.h)
|--------types.h <-(types.h)

|--------config.h <-(types.h)

Figure 8: Flatten script output on Jpeg Encoder example with -v and -g flag

6. Canny Model from UCI: The shell output is shown in Figure 9, part of the graph is omitted because
the inclusion tree is too long to fit in a single figure. Output file has been verified to contain all 43
SystemC header files and implementation files in the correct order. This example shows that flatten
can handle the standard file extensions and large number of files. Both g++ and RISC compiler were
able to compile the flattened file with no error message. However, while the executable from g++
compiler ran without any issue, the executable from RISC compile failed to run properly and had to

11

abort.

[user]:> flatten -i Main.cc -o test.cc -v -g
User input name for main, the path is: /canny/Main.cc
SYSTEM INCLUSION: {’#include "systemc.h"’}
H FILES: [’coordinatorx.h’, ’blurx.h’, ’coordinatory.h’,
’blury.h’, ’blurx par.h’, ’blury par.h’, ’prep.h’,
’derivative x y.h’, ’magnitude x y.h’, ’gaussian smooth.h’,
’mag delta.h’, ’non max supp.h’, ’apply hysteresis.h’, ’datain.h’,
’dut.h’, ’dataout.h’, ’config.h’, ’stimulus.h’, ’platform.h’,
’monitor.h’, ’types.h’, ’top.h’]
C FILES: [’coordinatorx.cc’, ’blurx.cc’, ’blurx par.cc’,
’coordinatory.cc’, ’blury.cc’, ’blury par.cc’, ’blurx par.cc’,
’blury par.cc’, ’prep.cc’, ’derivative x y.cc’, ’magnitude x y.cc’,
’gaussian smooth.cc’, ’mag delta.cc’, ’non max supp.cc’,
’apply hysteresis.cc’, ’datain.cc’, ’dut.cc’, ’dataout.cc’,
’stimulus.cc’, ’platform.cc’, ’monitor.cc’, ’top.cc’, ’Main.cc’]
---DONE FLATTENING---
---------GRAPH----------
NOTICE: ALL the C files are still printed in the correct order
though they are not shown in the graph

|--------Main.cc <-(None)
|--------types.h <-(Main.cc)

|--------config.h <-(types.h)
|--------config.h <-(types.h)
|--------top.h <-(Main.cc)

|--------config.h <-(types.h)
|--------types.h <-(top.h)

|--------config.h <-(top.h)
|--------stimulus.h <-(top.h)

|--------config.h <-(top.h)
......

|--------monitor.h <-(blurx par.h)
|--------config.h <-(blurx par.h)
|--------types.h <-(blurx par.h)

|--------config.h <-(blurx par.h)

Figure 9: Flatten script output on Canny example with -v and -g flag

7. Skunk from UCI: The script cannot flatten files from projects that utilize a python script to dynam-
ically generate source files. Therefore the flattened output invalid and cannot be compiled by either
compiler.

8. PNG Encoder Model from UCI: The shell output is shown in Figure 10. The output file has been
verified to contain all SystemC header files and implementation files in the correct order. In this project,
if define statement is used for system library inclusion which caused problem for g++ compiler. This
issue was solved by deleting the unsupported package inclusions (2 lines of code in this case). The
executable from g++ compiler was verified to run properly. RISC compiler on the other hand reported

12

“Segmentation fault” error message and failed to compile.

[user]:> flatten -i png.cc -o test.cc -v -g
User input name for main, the path is: png encoder/png.cc
SYSTEM INCLUSION: {’#include <stdio.h>’, ’# include <fcntl.h>’,
’#include "zlib.h"’, ’#include "systemc.h"’, ’#include <string.h>
// for strlen’, ’# include <io.h>’, ’#include <assert.h>’}
H FILES: [’config.h’, ’types.h’, ’stimulus.h’, ’monitor.h’,
’addfilter.h’, ’upfilter.h’, ’paeth.h’, ’png.h’]
C FILES: [’stimulus.cc’, ’monitor.cc’, ’addfilter.cc’,
’upfilter.cc’, ’paeth.cc’, ’png.cc’]
---DONE FLATTENING---
---------GRAPH----------
NOTICE: ALL the C files are still printed in the correct order
though they are not shown in the graph

|--------png.cc <-(None)
|--------png.h <-(png.cc)

|--------types.h <-(png.h)
|--------config.h <-(png.h)

|--------stimulus.h <-(png.h)
|--------types.h <-(png.h)

|--------config.h <-(png.h)
|--------monitor.h <-(png.h)

|--------types.h <-(png.h)
|--------config.h <-(png.h)

|--------addfilter.h <-(png.h)
|--------types.h <-(png.h)

|--------config.h <-(png.h)
|--------upfilter.h <-(png.h)

|--------types.h <-(png.h)
|--------config.h <-(png.h)

|--------paeth.h <-(png.h)
|--------types.h <-(png.h)

|--------config.h <-(png.h)

Figure 10: Flatten script output on png encoder from UCI example with -v and -g flag

5 Conclusion and Future Work
Flatten at its current state is fully functional and integrated with the upcoming RISC release (version 0.6.3)
and contains a test function in the Makefile. In terms of future development, other functionalities, like auto-
matic compile after flatten, are in consideration.

13

References
[1] Guido Van Rossum and Fred L Drake Jr. Python tutorial. Centrum voor Wiskunde en Informatica

Amsterdam, The Netherlands, 1995.

[2] Z. Cheng D. Mendoza R. Dömer G. Liu, T. Schmidt. Risc compiler and simulator, release v0.6.0: Out-
of-Order Parallel Simulatable SystemC Subset. Technical report.

[3] RISC open source. http://www.cecs.uci.edu/∼doemer/risc.html.

[4] Open SystemC Initiative, http://www.systemc.org. Functional Specification for SystemC 2.0, 2000.

[5] Z. Cheng R. Dömer G. Liu, T. Schmidt. RISC Compiler and Simulator, Release V0.4.0: Out-of-Order
Parallel Simulatable SystemC Subset. Technical report.

[6] Z. Cheng D. Mendoza R. Dömer G. Liu, T. Schmidt. RISC Compiler and Simulator, Release V0.5.0:
Out-of-Order Parallel Simulatable SystemC Subset. Technical report.

[7] R. Dömer Z. Cheng, T. Schmidt. Enabling IP Reuse and Protection in Out-of-Order Parallel SystemC
Simulation. Proceedings of the International Embedded Systems Symposium, Springer, Friedrichshafen,
Germany, September 2019.

14

http://www.cecs.uci.edu/~doemer/risc.html
http://www.systemc.org

A Appendix
NAME

flatten – Script to combine multiple source files for RISC compiler

SYNOPSIS

flatten [options]

DESCRIPTION

flatten is a tool designed to generate a single compilable file for the Recoding Infrastructure for
SystemC (RISC) compiler. flatten takes multiple source files from the user based on the include
preprocessor directives in each file, and outputs a single combined source file with the included files
inserted in correct order. flatten also supports displaying the graph of the file inclusion as well as
auto-detecting the main file.

For example, to flatten and view the inclusion structure of multiple source files of a given design,
use the following command:

flatten -i main.cc -o output.cc -g
flatten displays the inclusion tree as text in the terminal with each included filename and their

parents.

ARGUMENTS

If no argument is provided, the flatten script will scan for a ”main” file; if not found or multiple files
that contain ”main” are found, the script will terminate and ask for manual input.

OPTIONS

–h use this argument to print a brief message on the usage of the tool and quit

–v use this argument to print a list of included files

–g use this argument to print a graph (tree) of the dependencies

–x use this argument to auto-compile the flattened file using RISC

–i [input] use this argument to indicate the main file, no need to input multiple files

–o [output] use this argument to change the name of the output file; if omitted, this defaults to
”Main flat.cpp”

–d use this argument to turn on debug mode, display important internal data

VERSION

flatten is release version 0.6.3.

AUTHORS

Yutong (Tom) Wang <yutongw5@uci.edu>

15

COPYRIGHT

(c) 2021 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not commercial-quality software.

16

	Introduction
	Problem definition
	Related work

	Features
	Compatibility with multiple SystemC file extension
	Separation of library inclusion and user file inclusion
	Detail display and debug mode
	Draw inclusion hierarchy

	Command Line Options
	Available Arguments

	Experiments and Results
	Table of Examples
	Examples in Detail

	Conclusion and Future Work
	References
	Appendix

