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Abstract

This project focuses on exploring N-body problems on SystemC simulation environment. The goal is to first
evaluate the computation and communication patterns of various N-body problems, then to map these problems
into suitable architectures. The flexibility of SystemC environment makes this design space exploration feasible
and expendable. The massive parallelism in N-body algorithms make this problem a good candidate for bench-
marking parallel SystemC. As an example of N-body problems, we evaluate particle simulation in 2D space and
show the scalability of this space simulation in parallel SystemC simulation. The 2D space is divided into smaller
areas that each are mapped to one of the computational tiles that will run on one thread. At the end, we evaluate
the trend of speedup with respect to the number of threads on several multi-core hosts.
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Abstract

This project focuses on exploring N-body problems on
SystemC simulation environment. The goal is to first
evaluate the computation and communication pat-
terns of various N-body problems, then to map these
problems into suitable architectures. The flexibility
of SystemC environment makes this design space ex-
ploration feasible and expendable. The massive par-
allelism in N-body algorithms make this problem a
good candidate for benchmarking parallel SystemC.
As an example of N-body problems, we evaluate parti-
cle simulation in 2D space and show the scalability of
this space simulation in parallel SystemC simulation.
The 2D space is divided into smaller areas that each
are mapped to one of the computational tiles that will
run on one thread. At the end, we evaluate the trend
of speedup with respect to the number of threads on
several multi-core hosts.

1 Introduction

In recent years, there have been many works on mas-
sively parallel applications and the architectures that
can support such parallelism. One of the classes of
parallel applications is called N-Body problems. In
physics, the N-body problem is the challenge of pre-
dicting the individual motions of a group of celes-
tial objects interacting with each other gravitationally.
Solving this problem has been motivated by the desire

to understand the motions of the Sun, Moon, plan-
ets and the visible stars. In the 20th century, under-
standing the dynamics of globular cluster star systems
became an important N-body problem. The N-body
problem in general is considerably more difficult to
solve. One important feature of these problems is how
to simulate systems that contain these N-body prob-
lems.

The main focus of this project is designing and
analysis of high performance architectures for N-
body problems. This consists of designing the sys-
tem in SystemC environment and simulating their per-
formance during execution of large problems with
N-body structure. This includes multiple stages of
system design, each consisting of various refinement
steps. For example, planning the architecture based
on the structure of the problem and then mapping
small parts of the N-body problem to operational
units. This mapping requires analysis on computa-
tional requirement of the problem in addition to com-
munication pattern to other units. Simulating per-
formance of architecture with various configurations
is expected to show strong and weak points of tra-
ditional and proposed architectures in running large-
scale scientific problems. This analysis would bring
insight on how to design future high performance ar-
chitectures for such applications. In this work, we
will use particle simulation as a well-known N-body
problem.

The remainder of this report is organized as fol-
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lows: After a brief description of N-body problems in
Section 2, we will explain simulation of these prob-
lems in Section 3. In Section 4, we then explain about
SystemC simulation. Section 5 describes the architec-
ture used in this work. We then list challenges in this
domain in Section 6 and then show the result of our
Particle simulation in parallel SystemC in Section 7.
Finally we’ll conclude this report in Section 8.

2 Definition of N-body problems

N-body problem in domain of physics can be defined
as the problem of predicting the individual motions of
a group of celestial objects interacting with each other
gravitationally[1]. Solving this problem has been mo-
tivated by the desire to understand the motions of
the Sun, Moon, planets and the visible stars. In the
20th century, understanding the dynamics of globu-
lar cluster star systems became an important n-body
problem[2]. The n-body problem in general relativity
is considerably more difficult to solve.

The classical physical problem can be informally
stated as: given the quasi-steady orbital properties (in-
stantaneous position, velocity and time)[3] of a group
of celestial bodies, predict their interactive forces; and
consequently, predict their true orbital motions for all
future times

2.1 History

One of the first cases of these type of problems started
with curiosity about the orbital positions of planet’s
orbit. Isaac Newton was able to produce equations to
predict planet’s motion, but later on he found out these
equations are not completely accurate and realized it
was because gravitational interactive forces amongst
all the planets was affecting all their orbits.

This discovery was the start of shaping what a N-
body problem is physically the realization of neces-
sity of knowing gravitational interactive forces have
to be known in addition to three orbital positions of
planets was the one of the first definitions of a N-body
problem.

2.2 General formula

The n-body problem considers N point masses mi,
i=1,2,...,N in an inertial reference frame in three di-
mensional space R3 moving under the influence of
mutual gravitational attraction. Each mass mi has a
position vector qi. Newton’s second law says that
mass times acceleration mid2qi/dt2 is equal to the
sum of the forces on the mass. Newton’s law of grav-
ity says that the gravitational force felt on mass mi by
a single mass m j is given by [9]:

Fi j =
Gmim j(q j−qi)∥∥q j−qi

∥∥3 , (1)

where G is the gravitational constant and
∥∥q j−qi

∥∥
is the magnitude of the distance between qiandq j

(metric induced by the `1 norm).
Summing over all masses yields the n-body equa-

tions of motion:

mi
d2qi

dt2 =
N

∑
j=1, j 6=i

Gmim j(q j−qi)∥∥q j−qi
∥∥3 =

∂U
∂qi

(2)

where U is the self-potential energy

U = ∑
1≤i< j≤N

Gmim j∥∥q j−qi
∥∥ . (3)

3 N-body simulation

The N-body problem can be defined as the problem
of simulating the movement of points or particles or
bodies under the influence of some type of force. De-
pending on the type of force, there are numerous ap-
plications ranging from astrophysics, molecular dy-
namics, fluid dynamics, to computer graphics and ma-
chine learning. Mathematically, given a system of N
source particles, with positions given by Y1,...,Yn and
N targets with positions X1,...,Xn we wish to compute
the N sums,

f (xi) =
N

∑
j=1

K(xi,yi).s(y j), i = 1, ...,N (4)

where f(x) is the desired potential at target point x,
s(y) is the density at source point y, and K(x, y) is
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Figure 1: An adaptive quadtree in 2-D with one parti-
cle in each leaf node.

an interaction kernel that specifies the physics of the
problem. For instance, the single-layer Laplace kernel
[14], K(x, y)= 1

4pi
1

||x−y|| might model electrostatic or
gravitational interactions.

There are a number of algorithms for computing
the potential and its derivative force exerted on the
target particles by the source particles. They can
be broadly classified into two categories, namely di-
rect and approximation algorithms. Evaluating these
sums using a direct algorithm requires O(N2) opera-
tions. However, there are computationally less expen-
sive approximation algorithms which reduce the com-
plexity to O(N logN) and even O(N). One such class
of approximation algorithms are called tree-methods,
which use a tree data structure as shown in Figure 1
to hierarchically decompose the particles.

4 Parallel SystemC simulation

For the evaluation and design space exploration of
cyber-physical and embedded system models, high
speed parallel simulation is critical. Traditional Dis-
crete Event Simulation (DES), which is used in ref-
erence simulators such as SystemC [10][8], manages
a set of explicitly specified concurrent threads by a
central scheduler. The simulation is driven by events
and time advances (delta- and time-cycles), but fol-
lows cooperative multi-threading semantics. Simu-
lation executes sequentially, only one thread at any
time. As such, regular DES cannot utilize the paral-
lel processing capabilities of modern multi- or many-
core hosts.

In contrast, synchronous Parallel Discrete Event
Simulation (PDES) [12][6][5] follows a partial tem-

poral order and executes threads in parallel if and only
if they run at the same simulated time. Usually, this
approach results in significant speedup compared to
traditional DES. Nevertheless, simulation cycles are
still absolute barriers which pose an obstacle to in-
creasing the simulation speed for many application
models [4].

To overcome these limitations, advanced PDES
techniques are needed. Our approach, Out-of-Order
Parallel Discrete Event Simulation (OoO PDES) [13]
breaks the simulation barrier by using local per-thread
time stamps and is known as the fastest technique for
ESL simulation today. OoO PDES utilizes advanced
compiler technology for static data and event conflict
analysis. This allows the simulator to run threads in
parallel and out-of order even in different delta and
time cycles if there are no conflicts. Thus, the sim-
ulator can execute the maximum number of threads
in parallel, resulting in highest simulation speed [11]
without the loss of accuracy. This technology can
also be applied to the use of modern many-core tar-
get platforms, such as the latest Intel Xeon Phi Many
Integrated Core (MIC) architecture. Here, we can ex-
pect multiple orders of magnitude speedup with 100
percent accuracy in the simulation and performance
evaluation of novel computing architectures.

5 Architecture model

Our current model simulates a system containing a
test bench and a grid of N * N functional units. The
goal of the test bench is only to initialize the parti-
cle space for simulation and provide each functional
unit with a portion of the entire space for simulation.
The rest of the simulation is done on functional units
called Design Under Test (DUT). A vast number of
DUTs and their correspondence to each other makes
this structure similar to a distributed system but the
flexibility to optimize the DUTs for computing com-
plex particle interactions and implementing a hand
tuned communication infrastructure suited for particle
simulation makes this system unique. System level
design gives us the capability to reduce the cost and
increase time-to-market while exploring for architec-
ture with desired performance for such problem.

Figure 2(a) shows a sample space consisting of
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Figure 2: Particle simulation modeling:(a) Particle space divided into nine spaces (b) Sample system with 9
DUTs (c) Schematic of one DUT

thousands of particles. Figure 2(b) describes a sys-
tem generated with nine DUTs to host the particle
space simulation. Each portion of the space will be
mapped to one of the DUTs. Figure 2 (c) shows a
DUT unit schematic that is connected to its four di-
rect neighbors through reliable channels and have a
control connection to the main test bench. This unit
will receive particles assigned to it from the test bench
at beginning of the simulation. In each iteration, this
unit will first analyze the forces toward every particle
from all other particles, then apply an advance move-
ment to each particle. This computation has to be
done for all particles during one iteration. Afterwards,
this DUT will pass the particles exiting its borders to
its corresponding DUT. In addition, center of mass in
every portion of space can be broadcast to all other
DUTs. Due to the fact that this broadcast is an expen-
sive communication it’s optional to have this function
based on the particle space characteristics.

The simulation time for even one time-step is much
longer in comparison to simulating only few millisec-
onds of particle behavior in real time. This is due to
massive parallel movement of particles in space and
their interaction with one another. This parallel na-
ture in particle simulation makes it suitable for paral-
lel simulation on a system with large number of cores.

Our current prototype of SystemC model functions
up to 64 different DUTs. This will enable us to simu-
late a reasonably large particle space to capture real-
application characteristics.

The next issue in such simulations is the commu-
nication cost between cores. The communication be-
tween DUTs is handled through reliable channels for
passing the particles to other spaces. This commu-
nication is required to transfer necessary information
about the state of each space and particles to other
functional units. This communication can be a bot-
tleneck in most distributed systems. Therefore com-
munication core arrangement such as torus is eval-
uated for this system and communication primitives
used for transferring data, such as single burst trans-
fer, one-to-all broadcast, and all-to-all broadcast, are
considered for this problem.

6 Challenges

We encountered several challenges during the model-
ing of particle simulation. Bellow we explain some of
these challenges and the solution we advised for each
of them.

6.1 Particle Simulation Modeling

Major issues happen when the simulation moves to
multiple functional units or DUTS. Some of these
problems are how to transfer the information about
the escaping particles to neighbor DUTs, how to real-
ize a particle have to bounce or jump and so on. T

The first problem was the memory management for
each DUT. Previously, every DUT had a fixed size
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memory allocated for a fixed number of particles.
This has changed since particles can escape bound-
aries of one DUT and move to another unit. To fix
this problem we allocated extra memory with static
size that can be used to host more particles. In ad-
dition to having an advance movement from particles,
we also implement a memory management system for
each DUT to handle recycling of the extra memory.

If we only broadcast center of mass of each portion
of space to other DUTs, we have no knowledge about
the particles close to our border on the other neighbor
DUTs which have direct impact on particles this side
of the border. This would result in inaccuracy when
two particles pass one region of the border at the same
time from opposite directions. As they are not aware
of each others existence, they may even pass through
each other on border jump. In addition, only broad-
casting center of mass doesn’t provide any useful in-
formation by itself. In future work we plan to explore
the exchange of information between DUT units for
each round of simulation.

6.2 Simulation environment issues and our
solutions

In this section we will discuss some of the environ-
ment related issues we faced during simulation. First
issue was memory leak. This problem happened when
a big number of particles moves to a specific DUT
and it runs out of memory. Solution, the DUT stops
the simulation and terminates to avoid memory leaks.
Next step would be implementing a recycling func-
tion to reuse the memory of the particles that left the
DUT.

Another issue was particles crossing the bound-
aries. Particles in adjacent DUTs which are close to
the boundaries don’t get effected by each other. This
is an important issue specially if the critical effecting
distance can reach to other units particles.

Final issue was preprocessing of port binding. In
order to generate massive systems with large num-
ber of DUTs, it’s inefficient to write the complete
system manually. One solution to this problem is to
first use a preprocessing script to generate the system
specification then compile it. Our script works up to
64 cores connected to test bench. The issue appears

when number of DUTs go beyond 64. The SystemC
compilation fails in port binding stage. Further study
shows there is a limit on binding by order which can
be resolved by using function ”bind” in SystemC.

6.3 Configurations

Here is a summery of the configuration knobs of our
modeling system and their effect on particle simula-
tion:

NUM DUT: This parameter specifies the number
of computational units instantiated in the simulation.
Each DUT will be responsible for part of particle sim-
ulation.

DUT ROW and DUT COL: So far the assumption
is the arrangement of the DUT is in a square with per-
fect square number of DUTs. In future we might want
to change the arrangement so we can use these config-
urations to specify number of DUTs in each row and
column.

NSTEPS: shows the number of iterations the sim-
ulation will run for. We can limit the simulation using
this parameter.

SAVE FILE: Setting this parameter to 1 saves the
coordinates of particles during simulation. This has
some overhead during simulation but can be used to
prepare a demo for simulation.

SAVEFREQ: In some cases we may want to avoid
saving the coords in every iteration. Save to file will
take a major time of the simulation. By changing the
value of this step parameter we can save the coords
every SAVEFREQ steps.

N: This parameter shows the number of active par-
ticles in EACH DUT! In future we may want to
change this to contain number of all active particles
in the space.

EXTRA SPACE: This parameter specifies extra
space allocated in EACH DUT for accommodating
the escaping particles from neighbor DUTs.

DELAYS: These set of parameters will change the
delays embedded in each part of system to measure
the simulation time.

Initialization: Depending on the type of the simu-
lation we might want to give different initialized ac-
celeration and voracity. This might help us to repli-
cate a falling of particles or every particle moving to-
wards center and other cases.
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7 Experiments and Results

In this section we describe some of the results from
simulating particle simulation with different number
of particles in space and division of this space to
various numbers of computational units to show the
amount of parallelism achieved.

7.1 Communication vs Computation

There are some factors that are important in this ex-
ploration. One aspect that we look at is the ratio of
computation and communication complexity depend-
ing on how large our particle space is and what is the
granularity of divided chunks dedicated to each De-
sign Under Test (DUT) unit. We analyze this based
on two different scenarios that can later on be mapped
to communication model of different N-body prob-
lems. First one only communicate to adjacent tiles
the information regarding the movement of particles.
The second method, each DUT not only communi-
cates with neighbor tiles but also broadcast some in-
formation like center of mass or escaping particles to
all other tiles. This information can later on be used
to decide if tiles in further distance have any force to
one tile based on the cut-off measurement in every
simulation.

Simulation Specs 4 DUTs 9 DUTs
Execution Time 22.5s 50s

Computation 129444sc ns 250000sc ns
Neighbor 6719sc ns 8847sc ns

Neighbor+Broadcast 18719sc ns 29693sc ns

Table 1: Computation and communication simulation
delays in a sequential reference simulation

Table 1 shows the result on 500 iteration of sim-
ulation on a simple particle space with 250 particles
for each tile. It’s important to notice that execution
time is measure in time and the delays are measured
in simulation time. The reason for this is we wanted
to analyze the overhead of communication between
DUTs on the amount of computation done. We also
notice a large overhead when we add the broadcast
method due to blocking transfer between these units.

We can observe using reliable channels implements

similar to SpecC channels [7] a synchronization is
needed every time two tiles need to communicate.
This synchronization in case of broadcast has been
done first in row wise fashion then DUTs in the same
column exchange data. This method enables us to
extend the simulation to any square number of tiles
without any need to change the communication pro-
tocols.

7.2 Parallel Speedup

Out of order Parallel SystemC [12][5] enables the ex-
ecution of independent tiles to run in parallel to each
other. This would enable every thread to run on a core
in concurrent to each other with low synchronization
overhead. One of our main focuses in this project is to
show the abilities of parallel SystemC in optimizing
the simulation of highly parallel systems depending
on the hardware they are running on.

We illustrate simulation speedup that parallel Sys-
temC can deliver comparing to sequential SystemC
simulation. The experiments are done four different
machine to show the scalability of this environment.
Table3 shows the speedup of four different machines
with various number of cores and threads. Tables be-
low also show individual speedup for each machine.

Figure 3: Parallel speed up based on number of ma-
chines cores

6



Machine name Number of CPUs Number of cores Number of threads
Theta 1 2 2
Mu 1 4 1

Delta 1 4 2
Xi 2 6 2

Table 2: Four test machines configurations

Number of tiles Parallel CPU usage Sequential CPU usage Speedup
4 DUTs 49.97s 177 102.7s 104 2.05
9 DUTs 120s 176 227s 104 1.89

16 DUTs 204.45s 187 401.49s 104 1.96
25 DUTs 319s 188 627 104 1.96

Table 3: Speedup in simulation using parallel SystemC on a 2 core machine

8 Conclusion and future work

In this project we have done a design space explo-
ration on N-body applications. As an example we
used particle simulation and demonstrated Parallel
SystemC ability to speedup simulation process. Com-
putation and communication patterns of particle sim-
ulation throughout various software/hardware map-
ping. We have divided the particle space into multiple
tiles and mapped each tile to a parallel thread. Finally
we have evaluated the speedup we can gain from sim-
ulating the particle simulation on parallel SystemC.
This work can be further expanded to accommodate
many other massively parallel applications.
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