

Center for Embedded and Cyber-Physical Systems
University of California, Irvine

 A Light Weight SystemC Library for Faster Compilation

 Farah Arabi, Tim Schmidt, Rainer Dőmer

Center for Embedded and Cyber-Physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

{farabi,schmidtt,doemer}@uci.edu

CECS Technical Report 16 - 07
October 20, 2016

Contents

1 Abstract 2

2 Background 2

3 Introduction 2

4 Source Code Transformations 2
4.1 Basic functions 2

4.1.1 Functions with Plain Old Data Return Types 3
4.1.2 Functions with Class Derived Return Types 3

4.2 Operator Functions 4
4.3 Template Functions 4
4.4 Inline Functions 5
4.5 Functions with modifiers 5

5 Validation and Testing 6
5.1 Translator modifications 6

5.1.1 Translator User-Defined Transformations 7
5.2 Boost 7
5.3 S2C Testbench Design 8
5.4 Script file 8

6 Experiments and Results 8
6.1 Compilation Time Results 9
6.2 AST Size Results 9
6.3 Evaluation 12

7 Conclusion 12

1

1 Abstract
The Light Weight SystemC Library is a summer undergraduate project that was completed to aid a

larger project known as Parallel SystemC Simulation on Many-Core Architectures [1]. In order to reduce
the compile-time of the parallel compiler [2], the light weight SystemC library was achieved through
multiple transformations made to the header and source filesof the original SystemC library [3]. After
completing the transformations, 17 designs were tested with the new light weight SystemC library. Our
results show that the light weight SystemC library is able todecrease the number of nodes traversed by the
SystemC compiler by %14.31-%23.36 for the 17 test designs. As a consequence, our experimental results also
show that the new library is able to decrease the compilationtime by %14.41-%19.14 for the same 17 designs.

2 Background
The optimization of the SystemC library into a light weight SystemC library is only a small part of

the projectParallel SystemC Simulation on Many-Core Architectures. The goal of theParallel SystemC
Simulation on Many-Core Architecturesis to develop a SystemC based simulator that consists of a dedicated
SystemC compiler and a parallel SystemC simulator to implement Out-of-Order Parallel Discrete Event
Simulation(OoO PDES) [5] for SystemC. OoO PDES can execute threads in parallel and out-of-order which
results in a faster simulation speed while maintaining the classic SystemC modeling semantics. The light
weight SystemC library developed in this summer project anddescribed in this report serves to shorten the
time needed to analyze and compile a parallel C++ model.

3 Introduction
In this report, we discuss the process of attaining an optimized light weight SystemC library. First,

we discuss the necessary transformations that had to be madeto optimize the SystemC library. Second,
we describe the testing technique along with the ROSE compiler [6] that provided us with tangible results.
Lastly, we analyze these results and validate that the developed light weight SystemC library indeed shortens
compilation time.

4 Source Code Transformations
The transformation into a light weight SystemC library involves some changes in the header files of the

library and their respective source files. In the original SystemC library, which is implemented in the C++
language, the header files include numerous function definitions. These functions exist in four main different
types and are referred to as basic, operator, template, and inline functions. Different types of functions entail
having somewhat different transformational procedures. However, there are a few steps in the transformations
that are common to most of the different types of functions.

In general, we first move all the function definitions from theheader files to their corresponding source
files. This reduces the amount of code the parallel compiler has to process and thus is expected to lead to
faster processing time. Then, we use the scope resolution operator to specify the necessary scopes to access
a specific function in the source file. As for the header file, the function body is deleted and what remains is
only the function declaration.

Some exceptions to this general procedure exist and are discussed in detail in the sections that follow.

4.1 Basic functions
We will first describe how basic functions are transformed.

2

Figure 1: Parallel SystemC Simulation [1]

4.1.1 Functions with Plain Old Data Return Types

Table 1 shows an example of the transformation of a basic function with a plain old data return type. In
the upper left cell of Table 1, we can see that the function double to double() const{...} is defined in class
sc time and namespace sccore. In order to transform this function, it is first copied into the source file where
the two function scopes are specified right after the return type. The first is the namespace known as sccore
and the second is the class the function belongs to known as sctime.

After that, the function definition in the header file is reduced to a function declaration as portrayed in
line 100 in the upper right cell of Table 1. With that, the transformation is complete.

4.1.2 Functions with Class Derived Return Types

Class derived return types are three types: pointer (scobject∗ wait(...)), value (scobject wait(...)), and
reference (scobject& wait(...)). In order to transform this type of function, we first copy the definition into
the source file. Next, the scopes are specified for both the return type and the function. The class derived
return types usually require specifying only one scope, thenamespace, right before the return type. The
positioning of the scopes for the actual function is just like that of the plain old data type functions. Basically,

3

the corresponding namespace and class are specified after the return type and right before the function name.

Before After

sc time.h

36 namespace s cc o r e {
. . .
73 c l a s s s ct i m e
74 {
75 p u b l i c :
. . .
105 doub le t o d o u b l e () c o n s t
106 {
107 r e t u r n s c d t : : u i n t 6 4 t o d o u b l e (m value) ;
108 }
. . .
201 } ;
. . .
250 } / / namespace s cc o r e

36 namespace s cc o r e {
. . .
73 c l a s s s ct i m e
74 {
75 p u b l i c :
. . .
100 doub le t o d o u b l e () c o n s t ;
. . .
142 } ;
. . .
217 } / / namespace s cc o r e

sc time.cpp Empty
74 doub le s cc o r e : : s c t i m e : : t o d o u b l e () c o n s t
76 {
77 r e t u r n s c d t : : u i n t 6 4 t o d o u b l e (m value) ;
78 }

Table 1: The transformation of a basic function with a plain old data return type

4.2 Operator Functions
Operator functions are transformed the same way as basic functions with one minor exception. The

scopes being specified for the function are to be placed rightbefore the word “operator” and not the actual
operator. Table 2 shows an example of the transformation of an operator function.

Before After

sc bit.h

68 namespace s cd t
69 {
. . .
86 c l a s s s cb i t
87 {
. . .
150 o p e r a t o r boo l () c o n s t
151 { r e t u r n m val ; }
. . .
186 } ;
. . .
423 } / / namespace s cc o r e

68 namespace s cd t
69 {
. . .
86 c l a s s s cb i t
87 {
. . .
190 o p e r a t o r boo l () c o n s t ;
. . .
235 } ;
. . .
345 } / / namespace s cc o r e

sc bit.cpp Empty 110 s c d t : : s c b i t : : o p e r a t o r boo l () c o n s t
111 { r e t u r n m val ; }

Table 2: The transformation of an operator function

4.3 Template Functions
Templates are a C++ feature that allows a function or class towork for various data types without rewriting

it each time it is used. In the header files, the template is written right before the class.
When we copy a function definition found in a template class into the source file, we also add a template

right before each function definition. This can be seen in line 67 of the new source file in Table 3 (bottom
right corner). Similar to a basic function, we also need to specify the function scopes in the source file.
Looking at line 36 of the original header file in Table 3, we cansee that the first scope is sccore, the
namespace. The second scope in line 56 is sceventexpr, the template class that the function belongs to. In
the new source file, we notice a modification to the class scopebecause of the presence of the<> operators

4

and the typename T resulting in sceventexpr<T>.

Before After

sc event.h

36 namespace s cc o r e {
. . .
55 temp la te< typename T>

56 c l a s s s ce v e n t e x p r
57 {
. . .
102 push back (t ype c o n s t & e l) c o n s t
103 {
104 s c a s s e r t (mexpr) ;
105 m expr−>push back (e l) ;
106 }
. . .
193 } ;
. . .
500 } / / namespace s cc o r e

36 namespace s cc o r e {
. . .
55 temp la te< typename T>

56 c l a s s s ce v e n t e x p r
57 {
. . .
74 push back (t ype c o n s t & e l) c o n s t ;
. . .
85 } ;
. . .
385 } / / namespace s cc o r e

sc event.cpp Empty

67 temp la te< typename T>

68 vo id s c c o r e : : s c e v e n t e x p r<T> : :
69 push back (t ype c o n s t & e l) c o n s t
70 {
71 s c a s s e r t (mexpr) ;
72 m expr−>push back (e l) ;
73 }

Table 3: The transformation of a template function

4.4 Inline Functions
An inline function is used by the compiler as an optimizationtechnique to reduce the run time of the

generated executable. The compiler replaces the function call statement with the function code itself and
then compiles it.

To transform an inline function, the function definition in the header file is first copied into the source file.
In the source file, the word “inline” is deleted and the class and namespace or only the namespace is added
right before the function name.

As for the header file, there are two cases. First, if only an inline function definition exists in the header
file, then the definition is reduced to a declaration and the word “inline” is removed. Second, if an inline
function declaration exists in addition to a function definition, then the function definition is completely
removed from the header file.

An example of the second case can be seen in Table 4. In the original header file in Table 4, line 241 has
the inline function declaration and lines 306-313 have the inline function definition. As one can see in line
206 of the new header file, the function declaration inside the class is mainly preserved except for the word
“inline” that is removed. In addition, the function definition is absent in the new header file.

4.5 Functions with modifiers
Functions with modifiers can actually be any type of the earlier discussed types of functions (basic,

operator, template and inline). What differentiates them from the rest is the first single word or modifier
preceding the function return type. The modifiers that are found in the header files include static, virtual,
extern, friend and explicit. In order to transform a function with a modifier, we ignore the modifier and
identify which of the 4 types of functions it is and then we transform it accordingly. Once we complete the
changes, we just have to ensure that the modifier remains in the function declaration in the header file only.
The modifiers are not to be placed in the source files.

5

Before After

sc prim channel.h

34 namespace s cc o r e{
. . .
194 c l a s s s cp r i m c h a n n e l
195 {
. . .
241 i n l i n e vo id r e q u e s tu p d a t e () ;
. . .
272 } ;
. . .
306 i n l i n e
307 vo id
308 s c p r i m c h a n n e l : : r e q u e s tu p d a t e ()
309 {
310 i f (! m u p d a t e n e x t p){
311 m r e g i s t r y−>r e q u e s t u p d a t e (∗ t h i s) ;
312 }
313 }
. . .
352 } / / namespace s cc o r e

34 namespace s cc o r e{
. . .
194 c l a s s s cp r i m c h a n n e l
195 {
. . .
206 vo id r e q u e s tu p d a t e () ;
. . .
249 } ;
. . .
254 } / / namespace s cc o r e

sc prim channel.cpp Empty

146 vo id
147 s c c o r e : :
148 s c p r i m c h a n n e l : : r e q u e s tu p d a t e ()
149 {
150 i f (! m u p d a t e n e x t p){
151 m r e g i s t r y−>r e q u e s t u p d a t e (∗ t h i s) ;
152 }
153 }

Table 4: The transformation of an inline function with a function declaration and definition

5 Validation and Testing
After completing the transformation of the SystemC library, we tested a set of benchmark designs

with our old and new SystemC libraries to check for a decreasein the number of traversed AST nodes
and compilation time. To do so, we used the ROSE compiler [6],specifically a ROSE translator. The
ROSE compiler is an open source compiler infrastructure that is used to build source-to-source program
transformations and analysis tools for large-scale language applications such as C++.

Listing 1: Source code for a ROSE-based identity translator
1 # i n c l u d e <r o s e . h>
2 i n t main (i n t argc , cha r∗∗ argv)
3 {
4 / / Bu i l d t h e AST used by ROSE (f r o n t e n d)
5 S g P r o j e c t∗ p r o j e c t = f r o n t e n d (argc , a rgv) ;
6
7 / / Genera te s o u r c e code from AST (backend)
8 r e t u r n backend (p r o j e c t) ;
9 }

5.1 Translator modifications
A translator is a ROSE tool that is simply used in place of one’s default compiler for example, g++ or

gcc. The translator source file translator.cpp consists of three parts: frontend, transformation, and backend.
First, the frontend, a function provided by the ROSE infrastructure, creates the abstract syntax tree (AST)

from the input.cpp file. An abstract syntax tree is basicallya flow chart or tree representation of the syntactic
structure of the source code in a given file. Second, the user inserts some user-defined transformations. Third,
the backend, also a function provided by the ROSE infrastructure, generates a source file from the AST.

To test out the translator, we first implemented a basic identity translator. The source code for the identity
translator is provided in Listing 1. The identity translator, just like any other translator, has a frontend and

6

backend. However, it does not perform any transformations,for it is conserving the identity of the source
code in the input file as its name suggests.

After the identity translator successfully compiled the input source file, we moved on to implementing
two user defined transformations. The transformations included a traversal to count nodes and a clock to time
the compilation.

5.1.1 Translator User-Defined Transformations

• Traversals to count the nodes:
The first addition to our translator was the implementation of a counter to count the total number of
traversed nodes in an AST. We were not able to produce a visualrepresentation of the AST, for the
number of nodes generated exceeded the maximum number of nodes that could be displayed in the
interactive viewer. On the other hand, we were still able to access the number of produced nodes.

We implemented a visit function in the VisitorTraversal class to override the protected member function
of AstSimpleProcessing, a built-in class that was made public to VisitorTraversal. The implemented
visit function contains a counter that increments every time a new node is visited.

• Clock to time the compilation:
The second addition was a clock that was used to time how long the AST generation (frontend) would
take in seconds. The duration of the compilation was measured using the std::clock() function that
belongs to the standard template library. This function returned the approximate processor time in
seconds used since the beginning of an implementation-defined era related to the execution of the
program. In our translator, two time recordings were made: once before executing the frontend and
once after. We found the delta in time from these two recordings and converted it to seconds. That
resulted in the measured compilation time.

Figure 2: Compilation of translator source file with ROSE andBoost libraries

5.2 Boost
Boost is a set of libraries for the C++ programming language that provides support for specific tasks

and structures. Boost was one of the software dependencies that had to be installed to provide C++ portable

7

runtime features. ROSE and/or software used by ROSE requires the following Boost libraries: chrono,
datetime, filesystem, iostreams, programoptions, random, regex, signals, system, thread, and wave.

As seen in Figure 2, the Boost and ROSE libraries were used to compile the translator source file and to
generate the executable translator.

5.3 S2C Testbench Design
After completing the translator, we decided to test our translator on the S2CBench v.1.1 design models

[7]. The S2CBench v.1.1 provides 16 programs written in synthesizable SystemC language. Each benchmark
is designed for specific domains, such as multimedia, digital signal processing, security, image processing,
etc. These different designs allow users to analyze their innovative algorithms and techniques and test the
quality of their results. We used this benchmark set to find the number of AST nodes traversed and the
compilation time with the original SystemC library and thenthe light weight SystemC library.

Figure 3: Compilation of input designs through ROSE compiler with light weight SystemC library

5.4 Script file
We used a script file which consists of a series of nested loopsin order to facilitate executing the program

multiple times. This was especially useful for timing compilation because we ran 17 test designs 5 times
each. Knowing that other tasks may have been active on the same computer, it was important to run each
design several times to ensure the consistency and accuracyof our results. Each of the 17 test designs was run
once for the node count and 5 times for compilation timing with both the original and light weight SystemC
libraries.

Figures 3 and 4 show how the input files, otherwise known as test designs, were compiled through the
ROSE translator (translator.out) with the original and light weight SystemC libraries, respectively. In total,
each design was run 2 times for the node count and 10 times for compilation timing.

6 Experiments and Results
After compiling the test designs with the ROSE compiler, we obtained the data displayed in the column

graphs in Figure 5 and Figure 7.

8

Figure 4: Compilation of input designs through ROSE compiler with original SystemC library

6.1 Compilation Time Results
Figure 5 compares the time needed to compile the test designswith the original SystemC library and the

light weight SystemC library. The test design with the shortest compilation time was testsystemc. When
compiled with the original SystemC library, the average measured compilation time was 12.82s in comparison
to 10.37s with the light weight SystemC library. We witnessed a decrease in 2.45s which was the greatest
relative decrease in compilation time among the test designs. The relative decrease, as displayed in Figure 6,
was 19.14%.

The test design with the longest compilation time was testinterpolation. When this design was compiled
with the original SystemC library, it took an average of 25.43s. However, when it was compiled with the
light weight SystemC library, it took an average of 21.77s. That amounted to a total decrease of 3.67s. This
design turned out to have the least relative decrease in compilation time which was 14.41%.

6.2 AST Size Results
As for Figure 7, it compares the number of AST nodes traversedin each test design with both the original

SystemC library and the light weight SystemC library. The test design that appeared to have the smallest
number of traversed nodes was also testsystemc. The number of traversed nodes when compiled with the
original SystemC library was 176,655 nodes. In contrast, the number of traversed nodes when compiled with
the light weight SystemC library was 135,559. That resultedin a total decrease of 41,096 nodes which is the
equivalent of a 23.26% decrease in the original number of nodes, as seen in Figure 8.

The test design with the largest number of traversed AST nodes was testinterpolation. When this test
design was compiled with the original SystemC library, it traversed a total of 362,245 nodes. When it was
compiled with the light weight SystemC library, it traversed a total of 310,382 nodes. The total decrease in the
number of traversed nodes equated 51,863 nodes which is a 14.31% decrease in the original number of nodes.

9

Figure 5: Compilation time of test designs with the originaland light weight SystemC libraries

Figure 6: Relative decrease in compilation time for test designs

10

Figure 7: Number of AST nodes traversed in test designs with the original and light weight SystemC libraries

Figure 8: Relative decrease in number of AST nodes for test designs

11

6.3 Evaluation
To summarize our results, we obtained a percentage decreasein compilation time ranging between

14.41% and 19.14% for all the test designs. We also obtained apercentage decrease in the number of traversed
AST nodes ranging between 14.31% and 23.26%.

From our results, we were able to deduce the following. The obvious conclusion is that as the number of
traversed nodes in a test design increases, the time to compile it increases as well. We can also deduce that
the percentage decrease in the number of nodes is inversely proportional to the number of traversed nodes in
a test design compiled with either of the original or light weight SystemC libraries. Most of all, we note that
our efforts of creating a light weight SystemC library with faster compilation time were successful.

7 Conclusion
After transforming the SystemC library and testing it usinga ROSE compiler, we were able to verify the

optimization of the SystemC library. Our results show that the time needed to compile an input design was
shortened. Similarly, the improved light weight SystemC library will shorten the pre-processing time needed
to compile a parallel C++ model and create a parallel executable for theParallel SystemC Simulation on
Many-Core Architecturesproject.

References
[1] R. Dömer, G. Liu, and T. Schmidt. Parallel SystemC Simulation on Many-Core Architectures.http://www.cecs.

uci.edu/∼doemer/risc.html.
[2] R. Dömer, G. Liu, and T. Schmidt. Parallel Simulation. InHandbook of Hardware/Software Codesign by S. Ha and

J. Teich Springer, August 2016.
[3] Accellera Systems Initiative. SystemC Language Working Group: SystemC 2.3.1, Core SystemC Language and

Examples.http://accellera.org/downloads/standards/systemc.
[4] IEEE Computer Society.IEEE Standard 1666-2011 for Standard SystemC Language ReferenceManual. IEEE, New

York, USA, 2011.
[5] W. Chen, X. Han, and R. D̈omer. Out-of-Order Parallel Simulation for ESL Design. InProceedings of the Design,

Automation and Test in Europe (DATE) Conference, 2012.
[6] D. J. Quinlan. ROSE: Compiler Support for Object-Oriented Frameworks.Parallel Processing Letters., 10(2/3):215–

226, 2000.
[7] B. C. Scḧafer and A. Mahapatra. S2CBench: Synthesizable Systemc Benchmark Suite for High-Level Synthesis.

Embedded Systems Letters, 6(3):53–56, 2014.

12

