Center for Embedded and Cyber-Physical Systems
University of California, Irvine

A Light Weight SystemC Library for Faster Compilation

Farah Arabi, Tim Schmidt, Rainer Démer

Center for Embedded and Cyber-Physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

{farabi,schmidtt,doemer}@uci.edu

CECS Technical Report 16 - 07
October 20, 2016

Contents

1 Abstract

2 Background
3 Introduction

4 Source Code Transformations

4.1 Basicfunctions

4.1.1 Functions with Plain Old Data Return Types

4.1.2 Functions with Class Derived Return Types oo v oo v v v o
4.2 Operator FUNCLIONS e e
4.3 Template FUNCLiONS L e e
4.4 Inline FUNCLIONS e e
4.5 Functions withmodifiers

5 \Validation and Testing
5.1 Translator modifications e e
5.1.1 Translator User-Defined Transformations
5.2 BOOSt e
5.3 S2C TestbenchDesign e e
5.4 Scriptfile e

6 Experiments and Results
6.1 Compilation Time Results e
6.2 AST SizeResults e
6.3 Evaluation

7 Conclusion

N

GO RDMNWNDN

Oﬁm\l\lmm

oo

1 Abstract

The Light Weight SystemC Library is a summer undergraduaidgeqt that was completed to aid a
larger project known as Parallel SystemC Simulation on M@&uaye Architectures [1]. In order to reduce
the compile-time of the parallel compiler [2], the light wgbi SystemC library was achieved through
multiple transformations made to the header and source fifethe original SystemC library [3]. After
completing the transformations, 17 designs were testeld thi2 new light weight SystemC library. Our
results show that the light weight SystemC library is abld¢orease the number of nodes traversed by the
SystemC compiler by %14.31-%23.36 for the 17 test designs cAnsequence, our experimental results also
show that the new library is able to decrease the compildiioe by %14.41-%19.14 for the same 17 designs.

2 Background

The optimization of the SystemC library into a light weightsg&mcC library is only a small part of
the projectParallel SystemC Simulation on Many-Core Architecturd$e goal of theParallel SystemC
Simulation on Many-Core Architecturesto develop a SystemC based simulator that consists ofiaated
SystemC compiler and a parallel SystemC simulator to implar®ut-of-Order Parallel Discrete Event
Simulation(OoO PDES) [5] for SystemC. OoO PDES can execute threads@liglaand out-of-order which
results in a faster simulation speed while maintaining tlgsic SystemC modeling semantics. The light
weight SystemC library developed in this summer project éestribed in this report serves to shorten the
time needed to analyze and compile a parallel C++ model.

3 Introduction

In this report, we discuss the process of attaining an opéthilight weight SystemC library. First,
we discuss the necessary transformations that had to be toam®imize the SystemC library. Second,
we describe the testing technique along with the ROSE cemfti] that provided us with tangible results.
Lastly, we analyze these results and validate that the dpgdllight weight SystemC library indeed shortens
compilation time.

4 Source Code Transformations

The transformation into a light weight SystemC library ilw&s some changes in the header files of the
library and their respective source files. In the origina$t®ynC library, which is implemented in the C++
language, the header files include numerous function defisit These functions exist in four main different
types and are referred to as basic, operator, templatentind functions. Different types of functions entail
having somewhat different transformational proceduresvévVer, there are a few steps in the transformations
that are common to most of the different types of functions.

In general, we first move all the function definitions from tieader files to their corresponding source
files. This reduces the amount of code the parallel compésrth process and thus is expected to lead to
faster processing time. Then, we use the scope resolutieratp to specify the necessary scopes to access
a specific function in the source file. As for the header file,ftinction body is deleted and what remains is
only the function declaration.

Some exceptions to this general procedure exist and angsdisd in detail in the sections that follow.

4.1 Basic functions
We will first describe how basic functions are transformed.

Parallel
Simulation

Figure 1: Parallel SystemC Simulation [1]

4.1.1 Functions with Plain Old Data Return Types

Table 1 shows an example of the transformation of a basidiimwith a plain old data return type. In
the upper left cell of Table 1, we can see that the functiorbioto.double() cons{...} is defined in class
sctime and namespace_sore. In order to transform this function, it is first copi@dai the source file where
the two function scopes are specified right after the retype.t The first is the namespace known asee
and the second is the class the function belongs to known &sec

After that, the function definition in the header file is redddo a function declaration as portrayed in
line 100 in the upper right cell of Table 1. With that, the stormation is complete.

4.1.2 Functions with Class Derived Return Types

Class derived return types are three types: pointeofgect wait(...)), value (smbject wait(...)), and
reference (smbject& wait(...)). In order to transform this type of furat, we first copy the definition into
the source file. Next, the scopes are specified for both therrégpe and the function. The class derived
return types usually require specifying only one scope,ntiimespace, right before the return type. The
positioning of the scopes for the actual function is just likat of the plain old data type functions. Basically,

the corresponding namespace and class are specified aftetdinn type and right before the function name.

Before After
36 namespace score {
73 class sctime 36 namespace score {
74 { .
. 73 class sctime
75 public: 74 {
. 75 public:
sctime.h 105 double tadouble() const
106 { 100 double tadouble () const;
107 return scdt::uint64_.to_.double (mvalue); !
108} 142 };
201 1 217} /I namespace s@ore
250 } //namespace score
74 double sccore::sctime::to.double() const
. 76 {
sctime.cpp Empty 77 return scdt::uint64.to.double (mvalue);
78 }

Table 1: The transformation of a basic function with a pldohdata return type

4.2 Operator Functions

Operator functions are transformed the same way as basitidns with one minor exception. The
scopes being specified for the function are to be placed hgfdre the word “operator” and not the actual
operator. Table 2 shows an example of the transformation oparator function.

Before

After

69 {

68 namespace sdt

86 class schit

68 namespace sdt
69 {

86 class scbhit

bith | o' o
scbit 150 operator bool () const 190 operator bool () const;
151 { return muval; } '
186 } 235 };
423} //namespace score 345 } //namespace score
Sabit.cpp Empty 110 scdt::sc_bit::operator bool () const

111 { return mval; }

Table 2: The transformation of an operator function

4.3 Template Functions

Templates are a C++ feature that allows a function or clas®tk for various data types without rewriting
it each time it is used. In the header files, the template igemright before the class.

When we copy a function definition found in a template class thé source file, we also add a template
right before each function definition. This can be seen ia B of the new source file in Table 3 (bottom
right corner). Similar to a basic function, we also need tecy the function scopes in the source file.
Looking at line 36 of the original header file in Table 3, we a@e that the first scope is_sore, the
namespace. The second scope in line 56 isvantexpr, the template class that the function belongs to. In
the new source file, we notice a modification to the class sbepause of the presence of the- operators

and the typename T resulting in_sgentexpr<T>.

Before After

36 namespace score {

55 template< typename T> 36 namespace score {

56 class sceventexpr

57 { 55 template< typename T>

56 class sceventexpr
102 pushback(type const & el) const| 57 {
scevent.h 103 {

104 sc.assert(mexpr); 7.1.1.pushback(type const & el) const;
105 mexpr—>push.back(el);

106 } 85 };

193 s 385 } //namespace score

500} /I namespace s@ore

67 template< typename T>
68 void sccore::sceventexpr<t>::
69 pushback(type const & el) const

scevent.cpp| Empty 70 {
71 sc.assert(mexpr);
72 m_expr—>push.back(el);
73 }

Table 3: The transformation of a template function

4.4 Inline Functions

An inline function is used by the compiler as an optimizatienohnique to reduce the run time of the
generated executable. The compiler replaces the functibrstatement with the function code itself and
then compiles it.

To transform an inline function, the function definition etheader file is first copied into the source file.
In the source file, the word “inline” is deleted and the clasd aamespace or only the namespace is added
right before the function name.

As for the header file, there are two cases. First, if only #ineérfunction definition exists in the header
file, then the definition is reduced to a declaration and thedwimline” is removed. Second, if an inline
function declaration exists in addition to a function defon, then the function definition is completely
removed from the header file.

An example of the second case can be seen in Table 4. In thiraddigeader file in Table 4, line 241 has
the inline function declaration and lines 306-313 have thi@é function definition. As one can see in line
206 of the new header file, the function declaration insidgedhss is mainly preserved except for the word
“inline” that is removed. In addition, the function defiwiti is absent in the new header file.

4.5 Functions with modifiers

Functions with modifiers can actually be any type of the eadiiscussed types of functions (basic,
operator, template and inline). What differentiates theomfithe rest is the first single word or modifier
preceding the function return type. The modifiers that atendoin the header files include static, virtual,
extern, friend and explicit. In order to transform a funotiwith a modifier, we ignore the modifier and
identify which of the 4 types of functions it is and then wenstorm it accordingly. Once we complete the
changes, we just have to ensure that the modifier remaing ifutittion declaration in the header file only.
The modifiers are not to be placed in the source files.

Before After

34 namespace score{

194 class scprim_channel
195 {

241 inline void requestupdate (); 34 namespace score{
- 194 class scprim_channel
272 }; 195 { p

scprim_channel.h | 306 inline

307 void

308 scprim_channel::requestupdate ()
309 {

310 if (! m.updatenextp){

311 m.registry—>requestupdate ¢ this);
312 }

313 }

206 void requestupdate ();
249 1

254 } //namespace s@ore

352 } //namespace score

146 void
147 sccore::
148 scprim_channel::requestupdate ()
H 149
scprim_channel.cpp, Empty 150 {” (I m_updatenextp){
151 m_registry—>requestupdate ¢ this);

Table 4: The transformation of an inline function with a ftion declaration and definition

5 Validation and Testing

After completing the transformation of the SystemC librame tested a set of benchmark designs
with our old and new SystemC libraries to check for a decréagbe number of traversed AST nodes
and compilation time. To do so, we used the ROSE compiler dpgcifically a ROSE translator. The
ROSE compiler is an open source compiler infrastructuré ithased to build source-to-source program
transformations and analysis tools for large-scale lagg@gplications such as C++.

Listing 1. Source code for a ROSE-based identity translator

1 #include <rose.h>
2 int main (int argc, cha#x argv)

3 {
// Build the AST used by ROSE (frontend)
SgProjeck project = frontend(argc, argv);

/| Generate source code from AST (backend)
return backend(project);

}

5.1 Translator modifications

A translator is a ROSE tool that is simply used in place of smefault compiler for example, g++ or
gcc. The translator source file translator.cpp consistirektparts: frontend, transformation, and backend.

First, the frontend, a function provided by the ROSE infiasture, creates the abstract syntax tree (AST)
from the input.cpp file. An abstract syntax tree is basicalfiow chart or tree representation of the syntactic
structure of the source code in a given file. Second, the nserts some user-defined transformations. Third,
the backend, also a function provided by the ROSE infrastracgenerates a source file from the AST.

To test out the translator, we first implemented a basic itjetnénslator. The source code for the identity
translator is provided in Listing 1. The identity transkatoist like any other translator, has a frontend and

© o0o~NO 0N

backend. However, it does not perform any transformatitorsit is conserving the identity of the source
code in the input file as its name suggests.

After the identity translator successfully compiled thpuhsource file, we moved on to implementing
two user defined transformations. The transformationsided a traversal to count nodes and a clock to time
the compilation.

5.1.1 Translator User-Defined Transformations

e Traversals to count the nodes:
The first addition to our translator was the implementatiba counter to count the total number of
traversed nodes in an AST. We were not able to produce a vispetsentation of the AST, for the
number of nodes generated exceeded the maximum number e$ ioat could be displayed in the
interactive viewer. On the other hand, we were still ablecimeas the number of produced nodes.

We implemented a visit function in the VisitorTraversalsddo override the protected member function
of AstSimpleProcessing, a built-in class that was madeipublVisitorTraversal. The implemented
visit function contains a counter that increments evergtamew node is visited.

e Clock to time the compilation:

The second addition was a clock that was used to time how lem@ 8T generation (frontend) would
take in seconds. The duration of the compilation was medsausing the std::clock() function that
belongs to the standard template library. This functionrretd the approximate processor time in
seconds used since the beginning of an implementationedefna related to the execution of the
program. In our translator, two time recordings were madeedefore executing the frontend and
once after. We found the delta in time from these two recgsliand converted it to seconds. That
resulted in the measured compilation time.

—

e

translator.cpp —-—(g++)—- translator.out

e

e = e

Figure 2: Compilation of translator source file with ROSE &uabst libraries

5.2 Boost
Boost is a set of libraries for the C++ programming langudwd provides support for specific tasks
and structures. Boost was one of the software dependeheiekdd to be installed to provide C++ portable

runtime features. ROSE and/or software used by ROSE reqthee following Boost libraries: chrono,
datetime, filesystem, iostreams, prograoptions, random, regex, signals, system, thread, and wave.

As seen in Figure 2, the Boost and ROSE libraries were usednipite the translator source file and to
generate the executable translator.

5.3 S2C Testbench Design

After completing the translator, we decided to test ourdtaior on the S2CBench v.1.1 design models
[7]. The S2CBench v.1.1 provides 16 programs written inlsgsizable SystemC language. Each benchmark
is designed for specific domains, such as multimedia, digi¢gal processing, security, image processing,
etc. These different designs allow users to analyze thaovative algorithms and techniques and test the
quality of their results. We used this benchmark set to firdribmber of AST nodes traversed and the
compilation time with the original SystemC library and tttea light weight SystemcC library.

o ? . |

input.cpp || translator ou/ rose_input.cpp
— _— . /

~Original |
SystemC
Library

—

Figure 3: Compilation of input designs through ROSE conmpiligh light weight SystemC library

5.4 Script file

We used a script file which consists of a series of nested limopsler to facilitate executing the program
multiple times. This was especially useful for timing cofafiobn because we ran 17 test designs 5 times
each. Knowing that other tasks may have been active on the samputer, it was important to run each
design several times to ensure the consistency and acafraayresults. Each of the 17 test designs was run
once for the node count and 5 times for compilation timingwaioth the original and light weight SystemC
libraries.

Figures 3 and 4 show how the input files, otherwise known agesigns, were compiled through the
ROSE translator (translator.out) with the original andhtigreight SystemC libraries, respectively. In total,
each design was run 2 times for the node count and 10 timesfopitation timing.

6 Experiments and Results
After compiling the test designs with the ROSE compiler, vetaned the data displayed in the column
graphs in Figure 5 and Figure 7.

e | ™ / "'H\

input.cpp |— [translator. o)-—- rose_input.cpp

Light Weight
SystemC
Library

Figure 4: Compilation of input designs through ROSE conmpilith original SystemC library

6.1 Compilation Time Results

Figure 5 compares the time needed to compile the test desigm¢he original SystemC library and the
light weight SystemC library. The test design with the sbsiricompilation time was teslystemc. When
compiled with the original SystemC library, the average saead compilation time was 12.82s in comparison
to 10.37s with the light weight SystemC library. We witnessedecrease in 2.45s which was the greatest
relative decrease in compilation time among the test desighe relative decrease, as displayed in Figure 6,
was 19.14%.

The test design with the longest compilation time was it@grpolation. When this design was compiled
with the original SystemC library, it took an average of Zs.4 However, when it was compiled with the
light weight SystemC library, it took an average of 21.77baflamounted to a total decrease of 3.67s. This
design turned out to have the least relative decrease initagiap time which was 14.41%.

6.2 AST Size Results

As for Figure 7, it compares the number of AST nodes traveirsedch test design with both the original
SystemC library and the light weight SystemC library. Th&t tdesign that appeared to have the smallest
number of traversed nodes was also_watemc. The number of traversed nodes when compiled wath th
original SystemC library was 176,655 nodes. In contrastntimber of traversed nodes when compiled with
the light weight SystemC library was 135,559. That resuitealtotal decrease of 41,096 nodes which is the
equivalent of a 23.26% decrease in the original number oégoas seen in Figure 8.

The test design with the largest number of traversed AST s\ades tesinterpolation. When this test
design was compiled with the original SystemC library, déversed a total of 362,245 nodes. When it was
compiled with the light weight SystemC library, it travedsetotal of 310,382 nodes. The total decrease in the
number of traversed nodes equated 51,863 nodes which i8 a4lecrease in the original number of nodes.

30

M original
M light

25
20
15
10
5
0

(s) swiL

ebA1sa)
yen”1sa)
[ELISBEEN
OEMOUS 1S3}
uosh 1s81

oGpW 18}
jwunsey 1sa}
uolrejodiaiul 1sa)
19pI1s9)

g 1sel

Wisel
Auedsip 1s91
uolyewiosp 1sa)
uue 1se}

soe 158}

wodpe 1se]

owaIsAs 191

Test Designs

Figure 5: Compilation time of test designs with the origiaat light weight SystemC libraries

5
0
5

0

ebA1sa)

uen 1sa)

|2qos 1sa1
OEMOUS 1S3)
uosb 1sa1
oGpw 18}
jwnses| 1sa}
uojrejodiaiui 1S9
10p1 1S9}
Jy1sel

T

Auredsip 1sal
uolewWIdep 18}
uue s8]

soe 158}
wodpe 1581

oWa1SAS 1S9

(%) awi| ul asealnaq abejuadlad

Test Designs

Figure 6: Relative decrease in compilation time for testgies

10

400000

350000

300000

250000

M original
H light

200000
150000
100000

S3pON 40 JaquinN

50000

0

ebA1se)

yen 1sa)

|200s 15931
OEMOUS ™ 1S9]
uosb s8]
oGpw1sal
lwnsey 1sal
uolrejodiaiul IS8l
10p1 18}

Jy 1881

IIBECH

Auredsip 1sa)
uojyewoap 1sal
uue 1s9)

soe s8]

wodpe 1s8}

oWaISAS 1sa]

Test Designs

Figure 7: Number of AST nodes traversed in test designs Wwéfotiginal and light weight SystemC libraries

25

20

15

10

5

0

ebA1se)

yen 1sa)

1200s 1s81
OEMOUS™ 1S9]1
yosb 1se1

oGpW 1S9}
jwnsey 1sa1
uolrejodiaul 1s91
10piT1s3)
1y1s8)1

Y 1sel

Aredsip 1sa)
uoljewiosp 1sal
uue 1sa}

soe 1s9)
wodpe1s91

oWaIsSAs 1591

(%) S9PON J0 JaqWInN

ul asealnaq abeluadlad

Test Designs

Figure 8: Relative decrease in number of AST nodes for tesgds

11

6.3 Evaluation

To summarize our results, we obtained a percentage decieasempilation time ranging between
14.41% and 19.14% for all the test designs. We also obtaipedc@ntage decrease in the number of traversed
AST nodes ranging between 14.31% and 23.26%.

From our results, we were able to deduce the following. Theons conclusion is that as the number of
traversed nodes in a test design increases, the time to oinipicreases as well. We can also deduce that
the percentage decrease in the number of nodes is inversglgrntional to the number of traversed nodes in
a test design compiled with either of the original or lightighe SystemC libraries. Most of all, we note that
our efforts of creating a light weight SystemC library widster compilation time were successful.

7 Conclusion

After transforming the SystemC library and testing it ussnBOSE compiler, we were able to verify the
optimization of the SystemC library. Our results show th&t time needed to compile an input design was
shortened. Similarly, the improved light weight Systemdry will shorten the pre-processing time needed
to compile a parallel C++ model and create a parallel exébrittor the Parallel SystemC Simulation on
Many-Core Architectureproject.

References

[1] R. Domer, G. Liu, and T. Schmidt. Parallel SystemC Simulation on Many-Cocaifectures.http://www.cecs.
uci.edu/~doemer/risc.html.

[2] R. Ddomer, G. Liu, and T. Schmidt. Parallel Simulation.Handbook of Hardware/Software Codesign by S. Ha and
J. Teich SpringerAugust 2016.

[3] Accellera Systems Initiative. SystemC Language Working Grousteé3gC 2.3.1, Core SystemC Language and
Examples http://accellera.org/downloads/standards/systemc.

[4] IEEE Computer SocietyEEE Standard 1666-2011 for Standard SystemC Language Refévtameel. IEEE, New
York, USA, 2011.

[5] W. Chen, X. Han, and R. Bmer. Out-of-Order Parallel Simulation for ESL Design.Proceedings of the Design,
Automation and Test in Europe (DATE) Confergritf@l2.

[6] D.J. Quinlan. ROSE: Compiler Support for Object-Oriented Fraorks: Parallel Processing Letters10(2/3):215—
226, 2000.

[7] B. C. Sctafer and A. Mahapatra. S2CBench: Synthesizable Systemc Bericl8u#e for High-Level Synthesis.
Embedded Systems Lette#$3):53-56, 2014.

12

