
Center for Embedded and Cyber-physical Systems

University of California, Irvine

RISC Compiler and Simulator, Beta Release V0.3.0:

Out-of-Order Parallel Simulatable SystemC Subset

Guantao Liu, Tim Schmidt, and Rainer Dömer

Technical Report CECS-16-06
September 30, 2016

Center for Embedded and Cyber-physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

+1 (949) 824-8919

{guantaol,schmidtt,doemer}@uci.edu
http://www.cecs.uci.edu/∼doemer/risc.html

{guantaol, schmidtt, doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

RISC Compiler and Simulator, Beta Release V0.3.0:

Out-of-Order Parallel Simulatable SystemC Subset

Guantao Liu, Tim Schmidt, and Rainer Dömer

Technical Report CECS-16-06
September 30, 2016

Center for Embedded and Cyber-physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

+1 (949) 824-8919

{guantaol,schmidtt,doemer}@uci.edu
http://www.cecs.uci.edu/∼doemer/risc.html

Abstract

SystemC is widely used in industry and academia to specify and simulate Electronic System Level (ESL)

models. Despite the wide availability of multi-core processor hosts, however, the reference SystemC simulator is

still based on sequential Discrete Event Simulation (DES) and executes only a single thread at any time.

In recent years parallel SystemC simulators were proposed which run multiple threads in parallel based on

synchronous Parallel Discrete Event Simulation (PDES) semantics. Synchronous PDES, however, limits parallel

execution to threads that run at the same time and delta cycle.

In this report, we describe the advanced Recoding Infrastructure for SystemC (RISC) approach where a

dedicated SystemC compiler and advanced parallel simulator implement Out-of-Order Parallel Discrete Event

Simulation (OoO PDES) for SystemC. OoO PDES can execute threads in parallel and out-of-order (ahead of

time) and thus achieves fastest simulation speed but nevertheless maintains the classic SystemC modeling se-

mantics.

This report describes the RISC Compiler and Simulator and details the SystemC subset supported by the

RISC Beta Release V0.3.0, as of September 30, 2016.

{guantaol, schmidtt, doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

Contents

1 Introduction 1

2 Out-of-Order Parallel Simulation 2

2.1 Notations . 2

2.2 Discrete Event Scheduler . 3

2.3 Parallel Discrete Event Scheduler . 3

2.4 Out-of-Order Parallel Discrete Event Scheduler . 4

3 RISC Compiler and Simulator 6

3.1 Segment Graph . 6

3.2 Conflict Analysis . 7

3.2.1 Static Analysis . 7

3.2.2 Dynamic Analysis . 7

3.3 Source Code Instrumentation . 8

3.4 Library Support . 9

3.5 Compiler Backend . 10

3.6 Simulator . 10

4 Out-of-Order Parallel Simulatable SystemC Subset 11

4.1 SystemC Hierarchical Structure of Modules and Channels . 11

4.2 SystemC Threads . 19

4.3 SystemC Transaction Level Modeling (TLM) . 20

4.4 SystemC Datatypes . 20

4.5 SystemC Utilities and Other Constructs . 20

5 Conclusion 20

Acknowledgements 21

References 21

A Appendix 24

A.1 Manual Page of the RISC Compiler and Simulator . 24

A.2 Manual Page of the RISC Elaborator . 27

ii

List of Figures

1 Traditional Discrete Event Simulation (DES) scheduler for SystemC. 3

2 Synchronous Parallel Discrete Event Simulation (PDES) scheduler for SystemC. 4

3 Out-of-Order Parallel Discrete Event Simulation (OoO PDES) scheduler for SystemC. 5

4 RISC Compiler and Simulator for Out-of-Order PDES of SystemC. 6

5 RISC Elaborator feeds dynamic elaboration information to RISC Compiler for precise conflict

analysis. 7

6 Control-flow abstractions for wait in library functions. 10

iii

List of Tables

1 RISC V0.3.0 Out-of-Order Parallel Simulatable SystemC Subset 12

2 RISC V0.3.0 Out-of-Order Parallel Simulatable SystemC Subset (continued) 13

3 RISC V0.3.0 Out-of-Order Parallel Simulatable SystemC Subset (continued) 14

4 RISC V0.3.0 Out-of-Order Parallel Simulatable SystemC Subset (continued) 15

5 RISC V0.3.0 Out-of-Order Parallel Simulatable SystemC Subset (continued) 16

6 RISC V0.3.0 Out-of-Order Parallel Simulatable SystemC Subset (continued) 17

7 RISC V0.3.0 Out-of-Order Parallel Simulatable SystemC Subset (continued) 18

8 RISC V0.3.0 Out-of-Order Parallel Simulatable SystemC Subset (continued) 19

iv

RISC Compiler and Simulator, Beta Release V0.3.0:

Out-of-Order Parallel Simulatable SystemC Subset

Guantao Liu, Tim Schmidt, and Rainer Dömer

Center for Embedded and Cyber-physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

{guantaol,schmidtt,doemer}@uci.edu
http://www.cecs.uci.edu/∼doemer/risc.html

Abstract

SystemC is widely used in industry and academia to specify and simulate Electronic System Level (ESL) models.

Despite the wide availability of multi-core processor hosts, however, the reference SystemC simulator is still

based on sequential Discrete Event Simulation (DES) and executes only a single thread at any time.

In recent years parallel SystemC simulators were proposed which run multiple threads in parallel based on

synchronous Parallel Discrete Event Simulation (PDES) semantics. Synchronous PDES, however, limits parallel

execution to threads that run at the same time and delta cycle.

In this report, we describe the advanced Recoding Infrastructure for SystemC (RISC) approach where a dedi-

cated SystemC compiler and advanced parallel simulator implement Out-of-Order Parallel Discrete Event Sim-

ulation (OoO PDES) for SystemC. OoO PDES can execute threads in parallel and out-of-order (ahead of time)

and thus achieves fastest simulation speed but nevertheless maintains the classic SystemC modeling semantics.

This report describes the RISC Compiler and Simulator and details the SystemC subset supported by the RISC

Beta Release V0.3.0, as of September 30, 2016.

1 Introduction

As an IEEE standard [1], the SystemC System Level Description Language (SLDL) is widely used for the spec-

ification, modeling, validation and evaluation of Electronic System Level (ESL) models. Under the Accellera

Systems Initiative [2], the SystemC Language Working Group [3] maintains not only the official SystemC lan-

guage definition, but also provides an open source proof-of-concept library [4] that can be used to simulate

SystemC design models. However, implementing the classic scheme of Discrete Event Simulation (DES), this

reference simulator runs sequentially and cannot utilize the parallel computing resources available on multi-core

(or many-core) processor hosts. This severely limits the execution speed of SystemC simulation.

In order to provide faster simulation, Parallel Discrete Event Simulation (PDES) [5] has recently gained again

significant attraction (examples include [6], [7], [8], [9], [10], and [11]). The PDES approach issues multiple

threads (i.e. SC METHOD, SC THREAD and SC CTHREAD) concurrently and runs them on the available proces-

sor cores in parallel. In turn, the simulation speed increases significantly.

Regular PDES is synchronous, however. That is, time advances globally and all threads execute in lock-step

fashion. Here, the total order of time imposed by synchronous PDES still limits the opportunities for parallel ex-

ecution. When a thread completes its evaluation phase, it has to wait until all other threads finish their evaluation

1

{guantaol, schmidtt, doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

phases as well. Earlier completed threads must stop at the simulation cycle barrier and available processor cores

are left idle until all runnable threads reach the cycle barrier.

In order to overcome this problem, we have developed a novel technique called Out-of-Order Parallel Discrete

Event Simulation (OoO PDES) [12, 13, 14, 15]. By localizing the simulation time to individual threads and

carefully handling events at different times, the simulation kernel can issue threads in parallel and ahead of time,

following a partial order of time without loss of accuracy. Thus, Ooo PDES significantly reduces the idle time

of available parallel processor cores and results in maximum simulation speed, while maintaining the traditional

language and modeling semantics.

The OoO PDES technique was originally implemented based on the SpecC language [16, 17, 18, 19]. In this

report, we document our efforts to apply OoO PDES to the SystemC SLDL [20, 21, 1] which is both the de-facto

and official standard for ESL design today. In particular, we describe our Recoding Infrastructure for SystemC

(RISC) [22] which consists of a dedicated SystemC compiler and corresponding out-of-order parallel simulator

and implements OoO PDES for SystemC.

The remainder of this report is organized as follows: After a brief description of the simulator scheduling

algorithms used for DES, PDES and OoO PDES in Section 2, we describe the RISC Compiler and Simulator

proof-of-concept prototype in Section 3. In Section 4, we then list in detail the SystemC subset that is supported

by the current RISC Beta Release V0.3.0 (2016-09-30)1 and finally conclude this report in Section 5.

2 Out-of-Order Parallel Simulation

In this section, we briefly outline the scheduling algorithm used in out-of-order parallel simulation. We do

this incrementally, starting from the traditional Discrete Event Simulation (DES) scheduler, then describe the

synchronous Parallel DES (PDES) extension, and finally define the Out-of-Order PDES (OoO PDES) scheduling

algorithm.

2.1 Notations

To formally describe the discrete event scheduling algorithms, the following notations are introduced.

1. Each SystemC thread (SC METHOD, SC THREAD and SC CTHREAD) is assigned a localized time stamp

(tth, δth).

2. Each event (sc event) is assigned a notification time stamp (te, δe), where EV ENT S = ∪EV ENT St,δ.

3. Threads are grouped into different queues. Specifically,

(a) QUEUES = {READY , RUN, WAIT , WAIT T IME}.

(b) READY = ∪tht,δ where Thread th is ready to run at time (t,δ).

(c) RUN = ∪tht,δ where Thread th is running at time (t,δ).

(d) WAIT = ∪tht,δ where Thread th is waiting since time (t,δ).

(e) WAIT T IME = ∪tht,0 where Thread th is waiting for simulation time advance to (t,0).

1 An earlier version [23] of this technical report documents the prior Alpha Release V0.2.1 (2015-10-30).

2

!"#$"

!"#$%%&&%∅?

!"%&'()*+!"#$%,-%./0+!",-

1(234

∀#"$∈ &!'()*+#,,"-5%(6%#"7!%/84#"2%92":;4%

(!%$2</2!"24-%82$6;$9%#"7!%/84#"2%92":;4-

∀!"$∈ .#'/5%(6%!"7!%2=20"%(!%"$(>>2$24-%.29;=2+!"5%

.#'/,-%?0!2$"+!"5%!"#$%,-%)32#$%"$(>>2$24%2=20"!-%

!"#$%%&&%∅?

#4=#0)2%":2%!(9/3#"(;0%"(92-%

9;=2%":2%@$!"%!"%∈ .#'//'("%";%!"#$%-

!"#$%%&&%∅?

204

A;

A;

B2!

B2!

B2!

A;

Figure 1: Traditional Discrete Event Simulation (DES) scheduler for SystemC.

2.2 Discrete Event Scheduler

The Accellera reference simulation library of SystemC [4] is based on DES. Figure 1 depicts such a traditional

DES scheduling algorithm. In DES, a single thread is running at all times. When all threads in the READY and

RUN queues complete their current delta cycle, the root thread resumes and performs the update and notification

phase. Then threads are woken up and moved from the WAIT queue back into the READY queue. A new delta

cycle begins.

If no threads are ready after the update and notification phase, the current time cycle finishes. The simulation

kernel advances the simulation time and processes the earliest timed event from the WAIT T IME queue. A new

cycle begins for the updated simulated time.

Finally, when both the WAIT T IME and READY queues are empty, the simulation terminates.

2.3 Parallel Discrete Event Scheduler

In comparison to DES, regular synchronous PDES issues multiple threads (SC METHOD, SC THREAD and

SC CTHREAD) concurrently in a delta cycle. These threads can then execute truly in parallel on the multiple

available processor cores of the host.

Figure 2 shows the regular synchronous PDES scheduling algorithm. In the evaluation phase, as long as the

READY queue is not empty and an idle core is available, the PDES scheduler will issue a new thread from the

READY queue. If a thread finishes earlier than other threads in the same cycle, a new ready thread is assigned to

the idle processor core, unless there is no thread available in the READY queue, in which case the core is keept

idle until the next delta cycle.

It should be emphasized that synchronous PDES implies an absolute barrier at the end of each delta and time

cycle. All threads need to wait at the barrier until all other runnable threads finish their current evaluation phase.

3

start

READY == !?

th =Pick(READY);

Run(th);

sleep

"ch # PRIM_CHANNEL, if ch's update method

is requested; perform ch's update method;

"th # WAIT, if th's event is triggered; Remove(th,

WAIT); Insert(th, READY); clear triggered events;

READY == !?

advance the simulation time;

move the Þrst th # WAITTIME to READY;

READY == !?

end

No

No

Yes

Yes

Immediate

NotiÞcation

Delta Cycle

Timed Cycle

RUN == !?

|RUN| < #CPUs

&& READY != !? sleep

Yes

No

Yes

No

Yes

No

Figure 2: Synchronous Parallel Discrete Event Simulation (PDES) scheduler for SystemC.

Only then the synchronous PDES scheduler resumes and performs the update and notification phases, and finally

advances to the next delta or time cycle.

For the SystemC language in particular, there is a very important aspect to consider when applying PDES. For

semantics-compliant SystemC simulation, complex inter-dependency analysis over all variables in the system

model is a prerequisite to parallel simulation [24].

The Standard SystemC Language Reference Manual (LRM) [1] clearly states that “process instances execute

without interruption”. This requirement is also known as cooperative (or co-routine) multitasking which is

assumed by the SystemC execution semantics. As detailed in [24], the particular problem of parallel simulation

is specifically addressed in the SystemC LRM [1]:

“An implementation running on a machine that provides hardware support for concurrent processes

may permit two or more processes to run concurrently, provided that the behavior appears identical to

the co-routine semantics defined [...]. In other words, the implementation would be obliged to analyze

any dependencies between processes and constrain their execution to match the co-routine semantics.”

We will describe the required dependency analysis in more detail below (in Section 3.2), as it is also needed

for out-of-order PDES.

2.4 Out-of-Order Parallel Discrete Event Scheduler

In OoO PDES, we break the strict order of time (the synchronous barrier) by localizing time stamps to each

thread. Figure 3 shows the out-of-order parallel DES scheduling algorithm. Since each thread has its own

time stamp, the OoO PDES scheduler relaxes the event and simulation time updates, allowing more threads (at

4

different simulation cycles!) to run in parallel and ahead of time. This results in a higher degree of parallelism

and thus higher simulation speed.

!"#$"

∀!"#∈ !"#$, if !"'s event is triggered at (te, δe);

Remove(!", WAITt
th

, δ
th

); Insert(!", READYt
e

, δ
e

+1); update

!"'s local time stamp to (te, δe+1); clear triggered events;

move ∀!" ∈ WAITTIMEt, 0 to READYt, 0;

update !"'s local time stamp to (t, 0);

%&"'(== ∅?

%)* == ∅?

Yes

Yes
|%)*| < #CPUs

&& %&"'(!= ∅?

!" =Pick(%&"'();

NoConflicts(!")?

Remove(!", READYt, δ);

Insert(!", RUNt, δ);

Run(!"); end

sleep

sleep
No

No

Yes

Yes

No

No

Figure 3: Out-of-Order Parallel Discrete Event Simulation (OoO PDES) scheduler for SystemC.

In comparision to the synchronous PDES in Figure 2, Figure 3 moves threads from the WAIT and WAIT T IME

queues into the READY queue as soon as possible. Also, there is no specific point in the scheduling flow any

more for the classic delta and time cycles. Both delta and time updates are performed locally for each thread,

provided that there are no possible conflicts in the way (the NoCon f licts(th) condition is explained below).

In contrast to Figure 2 which performs requested update methods in primitive channels in each delta cycle,

Figure 3 does not contain this step any more. Due to the out-of-order scheduling and the eliminated central

scheduling point for delta cycles, it is difficult to determine an efficient and safe point in the OoO PDES scheduler

when primitive channel update requests can be served. However, it is always possible to safely fall back to

synchronous PDES when primitive channel updates are requested.

Note the NoCon f licts(th) condition shown in Figure 3. As already mentioned above for the synchronous

PDES, detailed dependency analysis is needed to avoid data or event conflicts for any shared variables among the

parallel threads. Only if NoCon f licts(th) is true, a new thread is issued for parallel execution (moved from the

READY to the RUN queue).

We will be using advanced static compile-time analysis (and optionally dynamic run-time analysis, see Sec-

tion 3.2.2) to identify all such potential conflicts. Based on this information (a simple table lookup is sufficient),

the OoO PDES scheduler can then at run-time quickly decide whether or not a set of threads has any conflicts

with each other.

5

3 RISC Compiler and Simulator

To realize the OoO PDES approach for the SystemC language, we present now our Recoding Infrastructure

for SystemC (RISC) and describe the overall RISC Compiler and Simulator proof-of-concept prototype (Beta

Release V0.3.0 as of 2016-09-30). The RISC software is available as open source and can be downloaded freely

from the following web site [22]: http://www.cecs.uci.edu/∼doemer/risc.html

RISC Compiler Target Compiler

RISC
SystemC
Library

systemc.h

Model.cpp

Segment Graph
Conflict Analysis

Source Code
Instrumentation

Input Model

O ut-of-Order
Parallel

Simulation

systemc
_ par.h

Model
_ par.cpp

C + +
C ompiler

Instrumented Model Executable
Model

Figure 4: RISC Compiler and Simulator for Out-of-Order PDES of SystemC.

To perform semantics-compliant SystemC simulation with maximum parallelism, we introduce a dedicated

SystemC compiler. This is in contrast to the traditional SystemC simulation where a regular SystemC-agnostic

C++ compiler includes the SystemC headers and links the input model directly against the SystemC library.

As shown in Figure 4, our RISC compiler acts as a frontend that processes the input SystemC model and

generates an intermediate model with special instrumention for OoO PDES. The instrumented parallel model

is then linked against the extended RISC SystemC library by the target compiler (a regular C++ compiler) to

produce the final executable output model. OoO PDES is then performed simply by running the generated

executable model.

From the user perspective, we essentially replace the regular SystemC-agnostic C++ compiler with the

SystemC-aware RISC compiler (which in turn calls the underlying C++ compiler). Otherwise, the overall Sys-

temC validation flow remains the same as before. It is just faster due to the parallel simulation.

For reference, the detailed Linux manual page of the RISC compiler risc and simulator is included in Ap-

pendix A.1 of this report.

Internally, the RISC compiler performs three major tasks, namely Segment Graph construction, conflict anal-

ysis, and source code instrumentation.

3.1 Segment Graph

The first task of the RISC compiler is to parse the SystemC input model into an abstract syntax tree (AST) and

then create a SystemC structural representation from the AST which reflects the SystemC module and channel

hierarchy, connectivity, and other SystemC-specific relations, similar to the SystemC-clang representation [25,

26]. For details on this part of the RISC application programming interface (API), please refer to the Doxygen-

generated documentation [27].

On top of this, the RISC compiler then builds a Segment Graph data structure for the model. A Segment

Graph (SG) [12] is a directed graph that represents the code segments executed during the simulation between

scheduling steps. That is, every segment is associated with a scheduler entry point, i.e. a wait statement in

SystemC.

At run time, threads switch back and forth between the states of running (threads in READY and RUN queues)

and waiting (threads in WAIT and WAIT T IME queues). When running, they execute specific segments of their

code. These code segments make up the nodes in the Segment Graph, whereas edges in the graph indicate the

possible transitions from one segment to another (an abstraction of the model’s control flow).

6

http://www.cecs.uci.edu/~doemer/risc.html

For a formal description of the Segment Graph and it’s construction algorithm, the interested reader may refer

to [15]. For details on the RISC API, please refer to the Doxygen-generated documentation [27].

3.2 Conflict Analysis

The Segment Graph data structure serves as the foundation for segment conflict analysis. As outlined earlier, the

OoO PDES scheduler must ensure that every parallel thread to be issued has no conflicts with any other threads

currently in the READY and RUN queues. Here, we utilize the RISC compiler to detect any possible conflicts

between these threads already at compile time.

Potential conflicts in SystemC include data hazards, event hazards, and timing hazards, all of which may exist

among the segments executed by the threads considered for parallel execution. Please refer to [15] for a detailed

discussion of these hazards which, if ignored, would become race conditions at run time.

Both possible hazard detection approaches, namely static analysis at compile time and dynamic analysis at run

time, are supported by RISC Compiler and Simulator Beta ReleaseV0.3.0.

3.2.1 Static Analysis

Static analysis relies purely on the available information in the SystemC source code of the design model at hand.

In this case, the RISC compiler performs very conservative identification of the potential hazards in the model.

Identifying all possible hazards is a complex analysis task that requires the full ”understanding” of the module

hierarchy. One option is to statically extract the module hierarchy and analyze the individual threads. Here, the

RISC compiler follows the approach outlined in [15].

However, in most cases not all of the needed information can be gathered statically. For instance, design

parameters may be passed via the command line, for example, to define the number of modules, certain channels

characteristics, or other configuration information. In such SystemC models, the instantiated modules, channels,

and ports are typically created through loops in a dynamic fashion. However, these exact parameters are only

available at run time, so they cannot be statically analyzed. In these cases, dynamic analysis is needed.

3.2.2 Dynamic Analysis

Dynamic analysis takes run-time information into account and then augments the classic static analysis. The

combination of static and dynamic analysis is often called hybrid analysis [28].

RISC Compiler
SystemC

Model

RISC
Elaborator

I nstance
Connectivity

Data

I nput Model Executable Model

Out-of-Order
Parallel

Simulation

Dynamic
Elab oration

Elab oration Model

Figure 5: RISC Elaborator feeds dynamic elaboration information to RISC Compiler for precise conflict analysis.

Figure 5 shows the extended RISC design flow with support of dynamic analysis. As in the regular compilation

flow discussed above in Figure 4, the input SystemC model is processed by the RISC Compiler to generate an

executable model for out-of-order parallel simulation, as shown on the top half of Figure 5 from left to right.

7

The dynamic analysis step, shown on the bottom half of Figure 5, extends the compilation flow by a prepro-

cessing step. The input SystemC model is fed into the RISC Elaborator elab which produces an executable

model that only performs the SystemC elaboration phase when run. At the end of the elaboration, the ex-

ecutable model automatically traverses the created module hierarchy via the SystemC introspection API and

dumps this detailed structural design information, shown as Instance Connectivity Data in Figure 5, into a file

(model name.elab). This file is in turn provided as an input to the RISC compiler, so that the dynamically

created design hierarchy and specific instance connectivity can be used for precise conflict analysis. The in-

stance connectivity data file includes the actual module hierarchy, the specific port mapping, and the actual target

variable mapping of references.

Note that the use of the RISC Elaborator is optional. Design models, that can fully be analyzed statically, can

be fed directly into the RISC Compiler without any preprocessing by the RISC Elaborator.

For reference, the detailed Linux manual pages of the RISC Compiler risc and RISC Elaborator elab are

included in Appendix A.1 and Appendix A.2, respectively.

3.3 Source Code Instrumentation

As a result of the conflict analysis (static, dynamic, or hybrid [28]), the RISC compiler generates several conflict

tables that describe all possible conflicts between threads in any two segments. Using this conservative informa-

tion, the simulator can then at run-time quickly determine by a simple table look-up whether or not it is safe to

issue any given thread in parallel or ahead of time.

As shown above in Figure 4, the RISC compiler and simulator work closely together. The compiler performs

conservative conflict analysis and passes the analysis results to the simulator which then can make safe scheduling

decisions quickly.

To pass information from the compiler to the simulator, we use automatic model instrumentation. That is,

the intermediate model generated by the compiler contains instrumented (automatically generated) source code

which the simulator then can rely on. At the same time, the RISC compiler also instruments user-defined SystemC

channels with automatic protection against race conditions among communicating threads.

In total, the RISC source code instrumentation includes four major components:

1. Segment and instance IDs: Individual threads are uniquely identified by a creator instance ID and their

current code location (segment ID). Both IDs are passed into the simulator kernel as additional arguments

to scheduler entry functions, including wait and thread creation.

2. Data and event conflict tables: Segment concurrency hazards due to potential data conflicts, event conflicts,

or timing conflicts are provided to the simulator as two-dimensional tables indexed by a segment ID and

instance ID pair. For efficiency, these table entries are filtered for scope, instance path, and reference and

port mappings.

3. Current and next time advance tables: The simulator can make better scheduling decisions by looking ahead

in time if it can predict the possible future thread states. This optimization is discussed in detail in [14].

However, it is not supported by the current RISC Compiler and Simulator V0.3.0 at this time.

4. User-defined channel protection: SystemC allows the user to design channels for custom inter-thread com-

munication. To ensure such communication is safe also in the OoO PDES situation where threads execute

truly in parallel, the RISC compiler automatically inserts locks (binary semaphores) into these channels so

that mutually-exclusive execution of the channel methods is guaranteed. Otherwise, race conditions could

exist when communicating threads exchange data.

8

Note that the source code instrumentation is performed automatically by the RISC Compiler and no user-

interaction is necessary. However, the interested user may inspect the instrumented source code. It is stored in a

file named risc model name.cpp which serves as the input file to the compiler backend which in turn then

generates the final executable.

3.4 Library Support

There exists a significant limitation for the described conflict analysis and source code instrumentation. It only

works if the compiler has access to the entire source code of the design model. This is typically fine for smaller

SystemC benchmark examples, but does not hold true for more complex SystemC models where multiple trans-

lation units and/or library files are used. In these cases, the compiler has access only to the function signatures

(function declarations in header files), but not to their implementation (function bodies which are precompiled

in the library file). Thus, the compiler cannot analyze the function bodies for potential conflicts, neither can it

instrument any segment boundaries (i.e. wait calls) in the library code with segment and instance IDs.

In its previous Alpha version [23], the RISC Compiler and Simulator operated under the assumption that all

library code is thread-safe without any conflicts, and does not contain any segment boundaries (no wait). This

is reasonable for the standard C/C++ libraries used in a modern Linux environment, as well as for the specially

prepared RISC SystemC simulator library. However, this assumption posed a significant limitation for more

complex SystemC models built around custom application libraries.

Now, RISC Compiler and Simulator Beta Release V0.3.0 offers support for library code by use of function

annotations. The RISC annotation scheme for library functions provides abstract information for both conflict

analysis and segment boundaries.

Specifically, the user can annotate function declarations with pragma statements which specify whether or

not the function poses any potential conflicts, and what type of wait calls the function body contains. For

example, the standard math function sqrt and the blocking read function of the SystemC sc fifo channel

are annotated as follows:

// standard math square-root function

#pragma RISC sqrt conflict-free no-wait

double sqrt(double x);

// sc_fifo blocking read function

#pragma RISC read conflict-free looped-wait event

virtual T read();

Here, the sqrt function is declared conflict-free because it is thread-safe and has no dangerous side

effects. Since this is true for many functions (e.g. most functions in the C standard library), the RISC Compiler

assumes this by default. Thus, this pragma statement is not explicitly needed.

The sc fifo::read function is also declared conflict-free because it operates in a standard SystemC

channel that is safely protected by a lock in the RISC simulator library. However, this blocking sc fifo::read

function is annotated as looped-wait because it contains a wait statement in the body of a loop that is waiting

for available data, which is indicated by some event. Thus, the RISC Compiler can take this segment boundary

into account when analyzing a call to this function.

In general, a function is considered conflict-free if the corresponding function body contains no poten-

tial read/write access conflicts to any shared state with the other threads in the simulation model. Otherwise, it

must be annotated as not-conflict-free.

9

!"#$%&' ("!)&'&"!%*

$%&'

+!("!)&'&"!%*

$%&'

*"",-)

$%&'

Figure 6: Control-flow abstractions for wait in library functions.

For the annotation of segment boundaries contained in library functions, Figure 6 shows the different control-

flow abstractions with regards to wait function calls in the corresponding function body. In the first case, the

function contains no wait statement and is a non-blocking function in SystemC simulation. The next two cases

apply to functions with a conditional or a non-conditional wait. The last case covers the possible encounter of

multiple wait statements, such as the blocking read call to a sc fifo discussed above.

Finally, the last parameter to the pragma statement specifies the type of the wait statement in the function

body, either event for waiting for any notified event, or the minimum time increment that the simulator will

incur when executing the corresponding function, such as sc-zero-time or (42,SC MS).

3.5 Compiler Backend

After the automatic source code instrumentation, the RISC compiler passes the generated intermediate model in

file risc model name.cpp to the underlying regular C++ compiler. That target compiler then produces the

final simulation executable by linking the instrumented code against the RISC extended SystemC library.

By default, the RISC Compiler and Simulator rely on the GNU C++ compiler g++ for the backend code

generation. Alternatively, the Intel C++ compiler icpc may be used to generate a simulation executable that

is optimized for Intel processors with Single-Instruction-Multiple-Data (SIMD) capabilities or the Intel Many-

Integrated-Core (MIC) architecture. Please refer to the command-line options -risc:icpc and -risc:mic,

respectively, which are documented in the manual pages for risc (see Appendix A.1) and elab (see Ap-

pendix A.2).

3.6 Simulator

Same as the classic Accellera proof-of-concept implementation [4], the RISC simulator is not an explicit tool,

but a run-time library [29] that the generated executable SystemC model is linked against. Thus, simulation is

performed by execution of the compiled model, the same way as before (just faster).

The RISC simulator identifies itself by its log message at the beginning of the simulation run, announcing

OoOPARALLEL execution after the SystemC language version number (SystemC 2.3.1). It also adds the

Center for Embedded and Cyber-physical Systems (CECS) as a contributor to the RISC-extended SystemC li-

brary.

A simple HelloWorld model is shown running in the following example:

sh % ./HelloWorld

SystemC 2.3.1-OoOPARALLEL --- Sep 21 2016 11:07:46

Copyright (c) 1996-2016 by CECS and all Contributors,

ALL RIGHTS RESERVED

10

Hello World!

There are two environment variables that the out-of-order parallel SystemC library is sensitive to. First, the

variable SYSC PAR SIM CPUS specifies the maximum number of parallel threads allowed in out-of-order paral-

lel simulation (namely #CPUs in Figure 3). For efficient simulation, this variable should be set to a value suitable

for the simulation host, e.g. the number of available CPU cores. If unset, SYSC PAR SIM CPUS defaults to 64.

Second, the environment variable SYSC SYNC PAR SIM can be used to force the default out-of-order parallel

scheduler to fall-back to synchronous parallel execution. By default (when undefined), SYSC SYNC PAR SIM

is assumed to be false, so out-of-order parallel simulation (OoO PDES) is performed. On the other hand, if

SYSC SYNC PAR SIM is set to true, the simulator will execute in synchronous PDES fashion.

As indicated above in Section 2.4, the RISC simulator Beta Release V0.3.0 (2016-09-30) also falls back to

synchronous execution as soon as primitive SystemC channels are used with requests to update functions. Thus,

such models will execute in safe synchronous manner.

4 Out-of-Order Parallel Simulatable SystemC Subset

Over more than a decade, the SystemC language [21], which technically is a C++ application programming

interface (API) with a corresponding simulation library, has evolved from basic constructs for modeling parallel

modules connected by signals and channels to a highly complex set of macros, types, classes, templates, and

functions for very advanced modeling (i.e. Transaction Level Modeling (TLM) 2.0 [30, 31]) and highly optimized

simulation of SystemC models. Usually these optimizations have aimed at higher simulation speed, i.e. by

minimizing context switches in the simulator, or at higher levels of abstraction due to purposely relaxed timing.

Often, the uninterrupted (sequential) execution semantics on a single processor host have been assumed or are

explicitly required.

Along these lines, it has been recognized that there is considerable need to study and adjust or evolve the

SystemC language towards better support of parallel execution (following some form of suitable PDES seman-

tics). One example of the ongoing discussion within the SystemC community is a presentation at the SystemC

Evolution Day 2016 where significant obstacles in the current language standard have been identified [32].

In contrast to the current SystemC standard [1], RISC now aims for truly parallel execution on multi- or many-

core hosts. Changing the fundamental assumptions about SystemC simulator execution consequently may affect

some constructs and APIs which need to be revisited and evaluated anew. The goal of this section is to start this

process and enable fruitful discussions.

Below, we describe and list the out-of-order parallel simulatable SystemC subset supported by the current

RISC Compiler and Simulator, Beta Release V0.3.0. In particular, Table 1 through Table 8 list for each SystemC

construct whether or not it is supported at this time. If applicable, an explanation note is provided that briefly

outlines the status and/or the plans for the given feature.

Overall, our current RISC proof-of-concept prototype supports the classic SystemC constructs for hierarchical

modeling and multi-threaded execution, but many advanced features are not supported yet or left undecided at

this stage. The status “undecided” in particular indicates that further study is needed to decide whether or not the

given construct can be supported in efficient and reasonable manner by RISC and its OoO PDES approach.

4.1 SystemC Hierarchical Structure of Modules and Channels

RISC supports the regular hierarchical and structural composition of the SystemC design model. This in-

cludes the SystemC program start (sc main, sc start) and the general composition (SC CTOR) of modules

(sc module, SC MODULE, sc behavior) and channels (sc channel, sc prim channel).

11

Table 1: RISC V0.3.0 Out-of-Order Parallel Simulatable SystemC Subset

Name Type Supported or not Notes

sc abs function Undecided
This function may not work with

some arithmetic SystemC datatypes.

sc actions typedef Supported typedef unsigned sc actions

sc argc function Supported

sc argv function Supported

sc assemble vector function Undecided Work on this function in the future

sc assert macro Undecided Work on this macro in the future

sc attr base class Undecided Work on this class in the future

sc attr cltn class Undecided Work on this class in the future

sc attribute class Undecided Work on this class in the future

sc behavior typedef Supported typedef sc module sc behavior

sc bigint class template Supported

sc biguint class template Supported

sc bind proxy class Supported

sc bind macro Undecided Work on this macro in the future

sc bit type (deprecated) Undecided Work on this type in the future

sc bitref r class template Undecided Work on this class template in the future

sc bitref class template Undecided Work on this class template in the future

sc buffer class Supported

sc bv base class Undecided Work on this class in the future

sc bv class template Undecided Work on this class template in the future

sc channel class Supported

sc clock class Not Supported Now
sc clock::before end of elaboration()

calls sc spawn().

sc close vcd trace file function Undecided Work on this function in the future

sc concatref class Undecided Work on this class in the future

sc concref r class template Undecided Work on this class template in the future

sc context begin enumeration Supported

sc copyright function Supported

sc cor class Supported

sc cor pkg class Supported

sc cor pthread class Supported

sc cor pkg pthread class Supported

sc create vcd trace file function Undecided Work on this function in the future

sc cref macro Undecided Work on this macro in the future

sc cthread process class Supported

SC CTHREAD macro Supported

The risc compiler can generate

the segment graph for SC CTHREAD,

however, it cannot handle the clock.

SC CTOR macro Supported

12

Table 2: RISC V0.3.0 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes

sc cycle Not Supported Now

sc cycle() calls sc simcontext::cycle(),

function which is not supported in

(deprecated) the out-of-order simulation

in the current release.

sc delta count function Supported
This function returns the local

delta count of the running process.

sc elab and sim function Supported

sc end of simulation invoked function Undecided Work on this function in the future

sc event and expr class Supported Initial support as of v0.3.0

sc event and list class Supported Initial support as of v0.3.0

sc event finder t class template Undecided
Work on this class template

in the future

sc event finder class Undecided Work on this class in the future

sc event or expr class Supported Initial support as of v0.3.0

sc event or list class Supported Initial support as of v0.3.0

sc event queue if class Supported

sc event queue class Not Supported Now

The constructor function is not

supported by the out-of-order

simulation in the current release.

sc event class Supported

The immediate notification is not

supported by the out-of-order

simulation in the current release.

sc exception typedef Undecided Work on this typedef in the future

sc export base class Not Supported Now No port following in compiler analysis

sc export class Not Supported Now No port following in compiler analysis

sc fifo blocking in if class Supported

sc fifo in if class Supported

sc fifo in class Supported

sc fifo nonblocking in if class Supported

sc fifo out if class Supported

sc fifo out class Supported

sc fifo class Limited Support

sc fifo::trace() and sc fifo::operator =

are not supported in this release;

execution falls back to synchronous PDES

sc find event function Undecided Work on this function in the future

sc find object function Undecided Work on this function in the future

sc fix fast class Undecided Work on this class in the future

sc fix class Supported

sc fixed fast class template Undecided
Work on this class template

in the future

sc fixed class template Supported

13

Table 3: RISC V0.3.0 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes

SC FORK macro Undecided Work on this macro in the future

sc fxcast context class Undecided Work on this class in the future

sc fxcast switch class Undecided Work on this class in the future

sc fxnum bitref class Undecided Work on this class in the future

sc fxnum fast bitref class Undecided Work on this class in the future

sc fxnum fast subref class Undecided Work on this class in the future

sc fxnum fast class Undecided Work on this class in the future

sc fxnum subref class Undecided Work on this class in the future

sc fxnum class Supported

sc fxtype context class Undecided Work on this class in the future

sc fxtype params class Undecided Work on this class in the future

sc fxval fast class Undecided Work on this class in the future

sc fxval class Undecided Work on this class in the future

sc gen unique name function Undecided Work on this function in the future

sc generic base class Undecided Work on this class in the future

sc get curr process handle
function

Supported
(deprecated)

sc get current process handle function Supported

sc get default time unit
function

Supported
(deprecated)

sc get status function Supported

sc get stop mode function Supported

sc get time resolution function Supported

sc get top level events function Undecided Work on this function in the future

sc get top level objects function Undecided Work on this function in the future

SC HAS PROCESS macro Supported

sc hierarchical name exists function Undecided Work on this function in the future

sc in clk typedef Supported

sc in resolved class Supported

sc in rv class Supported

sc in class Supported

sc in::add trace() and other tracing

functions are not supported by

the out-of-order simulation

in the current release.

sc in<bool> class Supported

sc in<bool>::add trace() and other

tracing functions are not supported by

the out-of-order simulation

in the current release.

sc in<sc dt::sc logic> class Supported

sc in<sc dt::sc logic>::add trace()

and other tracing functions are

not supported by the out-of-order

simulation in the current release.

14

Table 4: RISC V0.3.0 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes

sc initialize
function

Supported
(deprecated)

sc inout clk type (deprecated) Supported

sc inout resolved class Supported

sc inout rv class Supported

sc inout class Supported

sc int base class Supported

sc int bitref r class Undecided Work on this class in the future

sc int bitref class Undecided Work on this class in the future

sc int class template Supported

sc interface class Supported

sc interrupt here function Undecided Work on this function in the future

sc is prerelease function Undecided Work on this function in the future

SC IS PRERELEASE macro Supported

sc is running function Supported

sc is unwinding function Supported

SC JOIN macro Undecided Work on this macro in the future

sc length context class Undecided Work on this class in the future

sc length param class Undecided Work on this class in the future

sc logic class Undecided Work on this class in the future

sc lv base class Undecided Work on this class in the future

sc lv class template Undecided Work on this class template in the future

sc main function Supported

sc max time function Not Supported Now

This function is not supported by

the out-of-order simulation

in the current release.

sc max function Supported

sc method process class Supported

SC METHOD macro Supported

sc min function Supported

sc module name class Supported

sc module class Supported

SC MODULE macro Supported

sc mutex if class Not Supported Now

This class is not supported

by the risc compiler

in the current release.

sc mutex class Not Supported Now

This class is not supported

by the risc compiler

in the current release.

sc object class Supported

sc out clk type (deprecated) Supported

15

Table 5: RISC V0.3.0 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes

sc out resolved class Supported

sc out rv class Supported

sc out class Supported

sc pause function Undecided Work on this function in the future

sc pending activity at current time function Undecided Work on this function in the future

sc pending activity at future time function Undecided Work on this function in the future

sc pending activity function Undecided Work on this function in the future

sc phash class (deprecated) Undecided Work on this class in the future

sc plist class (deprecated) Undecided Work on this class in the future

sc port class Supported

sc port base class Supported

sc ppq class (deprecated) Undecided Work on this class in the future

sc prim channel class Supported

sc prim channel::update()

is performed in synchronous manner;

execution falls back to synchronous PDES

sc process b type (deprecated) Supported

sc process handle class Supported

sc pvector class (deprecated) Undecided Work on this class in the future

sc ref macro Undecided Work on this macro in the future

sc release function Supported

sc report handler proc typedef Undecided Work on this typedef in the future

sc report handler class Undecided Work on this class in the future

sc report class Undecided Work on this class in the future

sc semaphore if class Not Supported Now

This class is not supported

by the risc compiler

in the current release.

sc semaphore class Not Supported Now

This class is not supported

by the risc compiler

in the current release.

sc sensitive neg class (deprecated) Not Supported Now

This class is not supported

by the risc compiler

in the current release.

sc sensitive pos class (deprecated) Not Supported Now

This class is not supported

by the risc compiler

in the current release.

sc sensitive class Not Supported Now

This class is not supported

by the risc compiler

in the current release.

sc set default time unit
function

Supported
(deprecated)

sc set stop mode function Undecided Work on this function in the future

16

Table 6: RISC V0.3.0 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes

sc set time resolution function Supported

sc set vcd time unit
member function

Undecided Work on this function in the future
(deprecated)

sc signal in if class Supported

sc signal in if<bool> class Supported

sc signal in if<sc logic> class Supported

sc signal inout if class Supported

sc signal out if type (deprecated) Supported

sc signal resolved class Supported

sc signal rv class Supported

sc signal write if class Supported

sc signal class Supported

sc signal::trace() is not supported

by the out-of-order simulation

in the current release.

sc signal<bool> class Supported

sc signal<bool>::trace() is not

supported by the out-of-order

simulation in the current release.

sc signal<sc logic> class Supported

sc signal<sc logic>::trace() is not

supported by the out-of-order

simulation in the current release.

sc signed bitref r class Undecided Work on this class in the future

sc signed bitref class Undecided Work on this class in the future

sc signed subref r class Undecided Work on this class in the future

sc signed subref class Undecided Work on this class in the future

sc signed class Supported

sc simcontext Supported

sc simcontext::initial crunch(), cycle()

class and other functions are partially

(deprecated) supported by the out-of-order

simulation in the current release.

sc simulation time
function

Supported
(deprecated)

sc spawn options class Supported

sc spawn function Not Supported Now

sc spawn() is not supported

by the out-of-order simulation

in the current release.

sc start of simulation invoked function Undecided Work on this function in the future

sc start function Supported

sc start(double) function Not Supported Now

This function is not supported by

the out-of-order simulation

in the current release.

sc status enumeration Supported

17

Table 7: RISC V0.3.0 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes

sc stop here function Undecided Work on this function in the future

sc stop function Supported new support as of V0.3.0

sc string
class

Undecided Work on this class in the future
(deprecated)

sc subref r class template Undecided
Work on this class template

in the future

sc subref class Undecided Work on this class in the future

sc switch enumeration Supported

sc thread process class Supported

SC THREAD macro Supported

sc time class Supported

sc time stamp function Supported

sc time to pending activity function Undecided Work on this function in the future

sc trace delta cycles
function

Undecided Work on this function in the future
(deprecated)

sc trace file class Undecided Work on this class in the future

sc trace function Undecided Work on this function in the future

sc ufix fast class Undecided Work on this class in the future

sc ufix class Supported

sc ufixed fast class template Undecided Work on this class template in the future

sc ufixed class template Supported

sc uint base class Supported

sc uint bitref r class Undecided Work on this class in the future

sc uint bitref class Undecided Work on this class in the future

sc uint subref r class Undecided Work on this class in the future

sc uint subref class Undecided Work on this class in the future

sc uint class template Supported

sc unsigned bitref r class Undecided Work on this class in the future

sc unsigned bitref class Undecided Work on this class in the future

sc unsigned subref r class Undecided Work on this class in the future

sc unsigned subref class Undecided Work on this class in the future

sc unsigned class Supported

sc unwind exception class Undecided Work on this class in the future

sc value base class Undecided Work on this class in the future

sc vector assembly class Undecided Work on this class in the future

sc vector base class Undecided Work on this class in the future

sc vector class Undecided Work on this class in the future

sc version major function Supported

sc version minor function Supported

sc version originator function Supported

sc version patch function Supported

18

Table 8: RISC V0.3.0 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes

sc version prerelease function Supported

sc version release date function Supported

sc version string function Supported

sc version function Supported

wait function Limited Support wait(void) is not supported

next trigger function Not Supported Now

This function is not supported

by the risc compiler

in the current release.

halt function Not Supported Now

This function is not supported

by the risc compiler

in the current release.

Connectivity and communication of the instantiated components is supported through ports (sc port, sc in,

sc inout, sc out) and interfaces (sc interface).

In contrast to the traditional Accellera library, which only provides a type definition sc channel to

sc module, the RISC header files clearly distinguish channels from modules. Here, a separate sc channel

class is inherited from sc module, providing the same functionality, but making the two classes explicit.

Most of the SystemC predefined primitive channels2 (such as sc signal and sc fifo) are supported for

OoO PDES, except sc fifo::trace and sc fifo::operator= which are not supported in the current

release. For more details, please refer to the Doxygen-generated documentation [29].

4.2 SystemC Threads

The explicit and statically or dynamically [28] analyzable multi-threading of a SystemC design model is naturally

supported in RISC OoO PDES. This includes SystemC processes (SC HAS PROCESS, sc process handle,

sc cthread process, sc method process, sc thread process) and the corresponding threads and

methods (SC CTHREAD, SC METHOD, SC THREAD). For basic inter-thread synchronization, SystemC event no-

tifications (sc event.notify) and waiting for events or simulation time advance (sc wait) are supported.

However, dynamic SystemC thread creation and deletion (sc spawn, SC FORK, SC JOIN) is not supported

at this time.

While the application programming interface (API) for these constructs remains unmodified from the SystemC

user perspective, the RISC SystemC kernel internally supports extra parameters or arguments for these constructs

which are utilized after the automatic source code instrumentation by the RISC compiler (see Section 3.3 above).

In particular, segment and instance identifiers are supplied with each of these function calls so that the simulator

kernel is aware of the exact thread state upon every scheduler entry. This includes in particular the thread cre-

ation constructs (SC CTHREAD, SC METHOD, SC THREAD) and wait (sc wait) statements, as well as standard

communication interface methods (e.g. sc fifo in if::read).

2 As described in Section 2.4 and Section 3.6, the RISC Compiler and Simulator Beta Release V0.3.0 falls back to synchronous PDES

execution when primitive channels with update requests are used in the design model.

19

4.3 SystemC Transaction Level Modeling (TLM)

While transaction level modeling in general is a natural feature supported by OoO PDES [15], the modeling and

implementation choices made by SystemC TLM 2.0 [31] create significant problems for supporting it efficiently

in RISC. The root problem here lies in the elimination of explicit channels, which were a key contribution in the

early days of research on system-level design [16, 17, 18]. As most researchers agreed, the concept of separation

of concerns was of highest importance, and for system-level design in particular, this meant the clear separation

of computation (in behaviors or modules) and communication (in channels).

Regrettably, SystemC TLM 2.0 chose to implement communication interfaces directly as sockets in modules

[33] and this indifference between channels and modules thus breaks the assumption of communication being

safely encapsulated in channels. Without such channels, there is very little opportunity for safe parallel execution.

While a discussion at the SystemC Language Working Group [3] has started [32], at this point, it is unclear

how this situation can be worked around or corrected. Thus, SystemC TLM 2.0 can currently not be supported

by RISC.

4.4 SystemC Datatypes

A large part of the SystemC language covers special data types designed for bit-accurate hardware

modeling, simulation time representation, and other ESL specifics. These SystemC data types include

sc bigint, sc biguint, sc bit, sc bv, sc fix, sc ufix, sc fixed, sc ufixed, sc int,

sc uint, sc logic, and sc lv.

While all these SystemC data types are available in RISC, only a few of them have been validated and tested

for being safe in a truly parallel multi-threading context. At this point, RISC supports sc int, sc uint,

sc fixed, and sc ufixed (which are MT-safe). All other data types are so far untested and may or may not

be safely used in OoO PDES.

4.5 SystemC Utilities and Other Constructs

As listed in Table 1 through Table 8, there is a plethora of other SystemC APIs available. Some of

these are easily supported in RISC (such as sc copyright, sc version major, sc version minor,

sc version patch, sc version), others are not supported at this time, such as the SystemC built-in trac-

ing features (sc trace, sc trace file).

At this point, there is also a large number of special SystemC constructs for which it is unclear whether

or not these can be supported in an OoO PDES context with reasonable effort and efficiency. An example

of such constructs are those functions which involve or allow to inspect the simulator state at run-time, such

as sc find event, sc find object, sc get current process handle, sc get status,

sc get time resolution, sc get top level events, sc get top level objects,

sc hierarchical name exists, sc is running, sc is unwinding, sc simcontext, and

sc status.

On the other hand, access to the current simulated time (sc time, sc simulation time,

sc delta count), an essential part of every SystemC model evaluation, is fully supported by RISC OoO

PDES.

5 Conclusion

While SystemC is the de-facto and official standard language for ESL design, SystemC simulation largely is still

performed sequentially following classic DES semantics. Thus, SystemC simulation cannot utilize the parallel

20

processing capabilities available on today’s multi- and many-core host computers.

In this report, we have described the Recoding Infrastructure for SystemC (RISC), an agressive simulation

approach beyond traditional parallel DES, where a dedicated SystemC compiler and advanced parallel simulator

implement Out-of-Order Parallel Discrete Event Simulation (OoO PDES) for SystemC. This approach promises

to exploit parallel computing resources to the maximum extend and thus fastest simulation speed. At the same

time, OoO PDES maintains the traditional SystemC modeling semantics.

At this time, this technical report documents the RISC Compiler and Simulator and details the SystemC subset

supported by the RISC Beta Release V0.3.0. In contrast to the previous Alpha Release V0.2.1, the RISC Compiler

and Simulator Beta Release V0.3.0 is more robust and easier to install, features new support for dynamic conflict

analysis (see Section 3.2.2), safely supports primitive channels with update methods, offers new support of library

functions by use of #pragma annotations (see Section 3.4), and provides new support for the Intel compiler and

special target processors in the backend (see Section 3.5).

As we move on in the project, we will update this report and in particular the supported subset tables accord-

ingly.

Acknowledgements

This work has been supported in part by substantial funding from Intel Corporation under an initial seed grant

and a following three year grant for the project titled “Out-of-Order Parallel Simulation of SystemC Virtual Plat-

forms on Many-Core Architectures”. The authors thank Intel Corporation for the valuable support and express

special gratitude to Abhijit Davare, Ajit Dingankar and Desmond Kirkpatrick for fruitful discussions, productive

feedback and invaluable insights.

References

[1] IEEE Computer Society. IEEE Standard 1666-2011 for Standard SystemC Language Reference Manual.

IEEE, New York, USA, 2011.

[2] Accellera Systems Initiative. http://www.accellera.org.

[3] SystemC Language Working Group (LWG). http://accellera.org/activities/working-groups/systemc-language.

[4] SystemC Language Working Group. SystemC 2.3.1, Core SystemC Language and Examples.

http://accellera.org/downloads/standards/systemc.

[5] Richard Fujimoto. Parallel Discrete Event Simulation. Communications of the ACM, 33(10):30–53, Oct

1990.

[6] Christoph Schumacher, Rainer Leupers, Dietmar Petras, and Andreas Hoffmann. parSC: Synchronous Par-

allel SystemC Simulation on Multi-Core Host Architectures. In Proceedings of the International Conference

on Hardware/Software Codesign and System Synthesis, pages 241–246, 2010.

[7] Dukyoung Yun, Jinwoo Kim, Sungchan Kim, and Soonhoi Ha. Simulation Environment Configuration for

Parallel Simulation of Multicore Embedded Systems. In Proceedings of the Design Automation Conference

(DAC), pages 345–350, 2011.

[8] Ezudheen P, Priya Chandran, Joy Chandra, Biju Puthur Simon, and Deepak Ravi. Parallelizing Sys-

temC Kernel for Fast Hardware Simulation on SMP Machines. In PADS ’09: Proceedings of the 2009

ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distributed Simulation, pages 80–87, 2009.

21

http://www.accellera.org
http://accellera.org/activities/working-groups/systemc-language
http://accellera.org/downloads/standards/systemc

[9] Rohit Sinha, Aayush Prakash, and Hiren D. Patel. Parallel simulation of mixed-abstraction SystemC models

on GPUs and multicore CPUs. In Proceedings of the Asia and South Pacific Design Automation Conference

(ASPDAC), 2012.

[10] Weiwei Chen, Xu Han, and Rainer Dömer. Multi-Core Simulation of Transaction Level Models using the

System-on-Chip Environment. IEEE Design and Test of Computers, 28(3):20–31, May/June 2011.

[11] J.H. Weinstock, C. Schumacher, R. Leupers, G. Ascheid, and L. Tosoratto. Time-decoupled parallel systemc

simulation. In Proceedings of the Design, Automation and Test in Europe (DATE) Conference, Dresden,

Germany, March 2014.

[12] Weiwei Chen, Xu Han, and Rainer Dömer. Out-of-Order Parallel Simulation for ESL Design. In Proceed-

ings of the Design, Automation and Test in Europe (DATE) Conference, March 2012.

[13] Weiwei Chen and Rainer Dömer. An Optimizing Compiler for Out-of-Order Parallel ESL Simulation

Exploiting Instance Isolation. In Proceedings of the Asia and South Pacific Design Automation Conference

(ASPDAC), pages 461–466, February 2012.

[14] Weiwei Chen and Rainer Dömer. Optimized Out-of-Order Parallel Discrete Event Simulation using Predic-

tions. In Proceedings of the Design, Automation and Test in Europe (DATE) Conference, March 2013.

[15] Weiwei Chen, Xu Han, Che-Wei Chang, Guantao Liu, and Rainer Dömer. Out-of-Order Parallel Discrete

Event Simulation for Transaction Level Models. IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems (TCAD), 33(12):1859–1872, December 2014.

[16] Jianwen Zhu, Rainer Dömer, and Daniel D. Gajski. Syntax and semantics of the SpecC language. In

Proceedings of the International Symposium on System Synthesis, Osaka, Japan, December 1997.

[17] Daniel D. Gajski, Jianwen Zhu, Rainer Dömer, Andreas Gerstlauer, and Shuqing Zhao. SpecC: Specification

Language and Design Methodology. Kluwer Academic Publishers, 2000.

[18] Andreas Gerstlauer, Rainer Dömer, Junyu Peng, and Daniel D. Gajski. System Design: A Practical Guide

with SpecC. Kluwer Academic Publishers, 2001.

[19] Rainer Dömer, Andreas Gerstlauer, and Daniel Gajski. SpecC Language Reference Manual, Version 2.0.

SpecC Technology Open Consortium, http://www.specc.org, December 2002.

[20] Open SystemC Initiative, http://www.systemc.org. Functional Specification for SystemC 2.0, 2000.

[21] Thorsten Grötker, Stan Liao, Grant Martin, and Stuart Swan. System Design with SystemC. Kluwer Aca-

demic Publishers, 2002.

[22] Guantao Liu, Tim Schmidt, and Rainer Doemer. Recoding Infrastructure for SystemC (RISC) Compiler

and Simulator. http://www.cecs.uci.edu/∼doemer/risc.html.

[23] Guantao Liu, Tim Schmidt, and Rainer Dömer. RISC Compiler and Simulator, Alpha Release V0.2.1: Out-

of-Order Parallel Simulatable SystemC Subset. Technical Report CECS-TR-15-02, Center for Embedded

and Cyber-physical Systems, University of California, Irvine, October 2015.

[24] Rainer Dömer, Weiwei Chen, Xu Han, and Andreas Gerstlauer. Multi-Core Parallel Simulation of System-

Level Description Languages. In Proceedings of the Asia and South Pacific Design Automation Conference

(ASPDAC), pages 311–316, January 2011.

22

http://www.specc.org
http://www.systemc.org
http://www.cecs.uci.edu/~doemer/risc.html

[25] Anirudh Kaushik and Hiren D. Patel. SystemC-clang: An Open-source Framework for Analyzing Mixed-

abstraction SystemC Models. In Proceedings of the Forum on Specification and Design Languages (FDL),

Paris, France, September 2013.

[26] Hiren Patel. ”SystemC-clang: SystemC parser using the clang front-end”.

https://github.com/hdpatel/systemcclang.

[27] Tim Schmidt. Recoding Infrastructure for SystemC (RISC) API.

http://www.cecs.uci.edu/∼doemer/risc/html risc 030/index.html.

[28] Tim Schmidt, Guantao Liu, and Rainer Dömer. Hybrid Analysis of SystemC Models for Fast and Ac-

curate Parallel Simulation. In Proceedings of the Asia and South Pacific Design Automation Conference

(ASPDAC), January 2017.

[29] Guantao Liu. Out-of-Order Parallel SystemC (OOPSC) API.

http://www.cecs.uci.edu/∼doemer/risc/html oopsc 030/index.html.

[30] Frank Ghenassia. Transaction-Level Modeling with SystemC: TLM Concepts and Applications for Embed-

ded Systems. Springer, 2005.

[31] Open SystemC Initiative (OSCI). OSCI TLM-2.0 Language Reference Manual. OSCI, July 2009.

[32] Rainer Dömer. Seven Obstacles in the Way of Parallel SystemC Simulation. Presentation at SystemC

Evolution Day 2016, Munich, Germany, May 2016.

[33] David C. Black. The Definitive Guide to SystemC: TLM-2.0 and the IEEE 1666-2011 Standard. Tutorial

at Design Automation Conference, San Francisco, California, June 2015.

23

http://www.cecs.uci.edu/~doemer/risc/html_risc_030/index.html
http://www.cecs.uci.edu/~doemer/risc/html_oopsc_030/index.html

A Appendix

A.1 Manual Page of the RISC Compiler and Simulator

NAME

risc – Recoding Infrastructure for SystemC (RISC) Compiler and Simulator

SYNOPSIS

risc [options] design [options]

DESCRIPTION

risc is a dedicated compiler for the SystemC language. The purpose of risc is to parse, analyze, in-

strument, and compile a SystemC source program into an executable program for out-of-order parallel

simulation. risc is a frontend source-to-source compiler for SystemC built on top of the ROSE compiler

infrastructure with GNU or Intel C++ as backend target compiler. As such, risc relies on and supports

also most of the ROSE and GNU compiler options.

Using the command syntax shown in the synopsis above, the specified design is compiled. By de-

fault, risc reads the SystemC source file, performs preprocessing and builds an internal representation

(abstract syntax tree) and a Segment Graph (SG) of the model. Next, segment conflict analysis is per-

formed and the design model is instrumented for Out-of-Order Parallel Discrete Event Simulation (OoO

PDES). Finally, instrumented C++ code is generated, compiled, and linked into an executable file that

can be run for fast parallel simulation.

On successful completion, the exit value 0 is returned. In case of errors during processing, an error

code with a brief diagnostic message is written to the standard error stream and the compilation is

aborted with an exit value greater than zero.

For preprocessing and C++ compilation into an executable file, risc relies on the availability of an

external C++ compiler which is used automatically in the background. By default, the GNU C++

compiler g++ is used. Alternatively (see options –risc:icpc and –risc:mic below), the Intel C++ compiler

icpc may be used to generate an executable optimized for Intel processors with SIMD capabilities or

the Intel Many-Integrated-Core (MIC) architecture.

ARGUMENTS

design specifies the file name of the input SystemC design model; by default, the base name of

design is used as base name for the intermediate and output files;

OPTIONS

–h | —-help print the risc compiler version and a brief usage information message to standard output

and quit;

–v | —-verbose increment the verbosity level so that all tasks performed are logged to standard error

(default: be silent); at level 1, high-level messages about the tasks performed are dis-

played; at level 2, additional details such as input and output file names are listed; at

level 3, very detailed information about each executed task is printed;

24

–vv increment the verbosity level by two counts (same as –v –v);

–vvv increment the verbosity level by three counts (same as –v –v –v);

–w | —-warnings increment the warning level so that compiler warning messages are enabled (default:

warnings are disabled); four levels are supported ranging from only important warnings

(level 1) to pedantic warnings (level 4); for most cases, warning level 2 is recommended

(–w –w);

–ww increment the warning level by two counts (same as –w –w);

–www increment the warning level by three counts (same as –w –w –w);

–g add a symbol table suitable for debugging (e.g. using gdb) to the generated object files

and simulation executable (default: no debugging symbols);

–O | –O level optimize the generated simulation executable for higher execution speed and/or less

memory usage (default: no optimization);

–Idir add the specified dir to the include path (extend the list of directories to be searched

for including source files); include directories are searched in the order of their

specification; the standard include path ($SYSTEMC LW HOME/include or $SYS-

TEMC OOP HOME/include) is automatically appended to this list; by default, only

the standard include directories are searched;

–Ldir add the specified dir to the library path (extend the list of directories to be searched for

linker libraries); the library path is searched in the specified order; the standard library

path ($SYSTEMC OOP HOME/lib) is automatically appended to this list; by default,

only the standard library path is searched;

–llib add the specified lib to the list of libraries for the linker so that the executable is linked

against lib; libraries are linked in the specified order; the standard libraries (i.e. -

lsystemc) are automatically appended to this list; by default, only standard libraries

are used;

–c perform only the preprocessing, analysis, instrumentation, and compilation tasks; skip

the final linking stage so that only an object file is created (default: perform all tasks

including linking);

–o output file specify the name of the final output file explicitly (default: a.out);

–risc:dump output the computed segment graph (SG) and conflict tables as HTML files (default: no

HTML files are generated); these files may be viewed by a user in a browser in order to

inspect the out-of-order execution conditions of the model and improve it accordingly;

–risc:icpc use the Intel C++ compiler icpc in the backend for generating the executable (default:

GNU C++ compiler g++);

–risc:mic use the Intel C++ compiler icpc with option –mic in the backend for cross-compiling an

executable for the Intel Many Integrated Core (MIC) architecture (default: generate an

executable for the same processor the compiler is running on);

25

–risc:elab filename import the elaboration result produced by the RISC elaborator from file filename and

use it for more precise segment conflict analysis (default: pure static analysis);

–<rose:option> pass this option through to the underlying ROSE compiler (default: none);

–<GNU option> pass this option through to the underlying GNU compiler (default: none);

ENVIRONMENT

RISC is used at compile-time to determine the installation directory of the RISC compiler and sim-

ulator where the RISC system components are located (default: none);

SYSTEMC LW HOME is used at compile-time to find the RISC light-weight SystemC header files which

are expected in directory $SYSTEMC LW HOME/include (default: none);

SYSTEMC OOP HOME is used at compile-time to find the RISC out-of-order SystemC header files

which are expected in directory $SYSTEMC OOP HOME/include, and the RISC out-of-order

SystemC library which is expected in directory $SYSTEMC OOP HOME/lib (default: none);

SYSC PAR SIM CPUS is used by the RISC simulator at run-time to set the maximum number of con-

current threads allowed in the RISC out-of-order SystemC simulation (default: 64);

SYSC SYNC PAR SIM is used by the RISC simulator at run-time to force the RISC out-of-order Sys-

temC simulation to fall back to synchronous (in-order) PDES execution; note that this mode

is also automatically selected when SystemC primitive channels are used with update requests

(default: false);

VERSION

The RISC compiler and simulator is beta release version 0.3.0.

AUTHORS

Tim Schmidt <schmidtt@uci.edu>, Guantao Liu <guantaol@uci.edu>, and Rainer Doemer

<doemer@uci.edu>.

COPYRIGHT

(c) 2016 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

Possibly many, since this is a beta release of a proof-of-concept prototype implementation.

26

A.2 Manual Page of the RISC Elaborator

NAME

elab – Recoding Infrastructure for SystemC (RISC) Dynamic Elaborator

SYNOPSIS

elab design [options]

DESCRIPTION

elab is a special compiler for the SystemC language. The purpose of elab is to parse, analyze, instru-

ment, and compile a SystemC source program into an executable program for dynamic elaboration. elab

is a frontend source-to-source compiler for SystemC built on top of the ROSE compiler infrastructure

with GNU or Intel C++ as backend target compiler. As such, elab relies on and supports also most of

the ROSE and GNU compiler options.

Using the command syntax shown in the synopsis above, the specified design is compiled. By de-

fault, elab reads the SystemC source file, performs preprocessing and builds an internal representation

(abstract syntax tree) of the SystemC structural hierarchy. elab then instruments the design model so

that its execution stops after the end of the elaboration phase (no actual simulation will take place); the

dynamically built hierarchy and instance connectivity data is then dumped into a file design.elab which

can be passed to the RISC compiler risc for more precise conflict analysis.

On successful completion, the exit value 0 is returned. In case of errors during processing, an error

code with a brief diagnostic message is written to the standard error stream and the compilation is

aborted with an exit value greater than zero.

For preprocessing and C++ compilation into an executable file, elab relies on the availability of

an external C++ compiler which is used automatically in the background. By default, the GNU C++

compiler g++ is used.

ARGUMENTS

design specifies the file name of the input SystemC design model; by default, the base name of

design is used as base name for the intermediate and output files;

OPTIONS

–h | —-help print the elab elaborator version and a brief usage information message to standard

output and quit;

–v | —-verbose increment the verbosity level so that all tasks performed are logged to standard error

(default: be silent); at level 1, high-level messages about the tasks performed are dis-

played; at level 2, additional details such as input and output file names are listed; at

level 3, very detailed information about each executed task is printed;

–vv increment the verbosity level by two counts (same as –v –v);

–vvv increment the verbosity level by three counts (same as –v –v –v);

27

–w | —-warnings increment the warning level so that compiler warning messages are enabled (default:

warnings are disabled); four levels are supported ranging from only important warnings

(level 1) to pedantic warnings (level 4); for most cases, warning level 2 is recommended

(–w –w);

–ww increment the warning level by two counts (same as –w –w);

–www increment the warning level by three counts (same as –w –w –w);

–g add a symbol table suitable for debugging (e.g. using gdb) to the generated object files

and simulation executable (default: no debugging symbols);

–O | –O level optimize the generated simulation executable for higher execution speed and/or less

memory usage (default: no optimization);

–Idir add the specified dir to the include path (extend the list of directories to be searched

for including source files); include directories are searched in the order of their

specification; the standard include path ($SYSTEMC LW HOME/include or $SYS-

TEMC OOP HOME/include) is automatically appended to this list; by default, only

the standard include directories are searched;

–Ldir add the specified dir to the library path (extend the list of directories to be searched for

linker libraries); the library path is searched in the specified order; the standard library

path ($SYSTEMC OOP HOME/lib) is automatically appended to this list; by default,

only the standard library path is searched;

–llib add the specified lib to the list of libraries for the linker so that the executable is linked

against lib; libraries are linked in the specified order; the standard libraries (i.e. -

lsystemc) are automatically appended to this list; by default, only standard libraries

are used;

–c perform only the preprocessing, analysis, instrumentation, and compilation tasks; skip

the final linking stage so that only an object file is created (default: perform all tasks

including linking);

–o output file specify the name of the final output file explicitly (default: a.out);

–elab:o specify the name of the elaboration result file with instance connectivity data explicitly

(default: design.elab); this file will be produced when the executable generated by elab

is run (after its elaboration phase);

–<rose:option> pass this option through to the underlying ROSE compiler (default: none);

–<GNU option> pass this option through to the underlying GNU compiler (default: none);

ENVIRONMENT

RISC is used at compile-time to determine the installation directory of the RISC compiler and sim-

ulator where the RISC system components are located (default: none);

SYSTEMC LW HOME is used at compile-time to find the RISC light-weight SystemC header files which

are expected in directory $SYSTEMC LW HOME/include (default: none);

28

SYSTEMC OOP HOME is used at compile-time to find the RISC out-of-order SystemC header files

which are expected in directory $SYSTEMC OOP HOME/include, and the RISC out-of-order

SystemC library which is expected in directory $SYSTEMC OOP HOME/lib (default: none);

VERSION

The RISC elaborator is beta release version 0.3.0.

AUTHORS

Tim Schmidt <schmidtt@uci.edu>, Guantao Liu <guantaol@uci.edu>, and Rainer Doemer

<doemer@uci.edu>.

COPYRIGHT

(c) 2016 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

Possibly many, since this is a beta release of a proof-of-concept prototype implementation.

29

	1 Introduction
	2 Out-of-Order Parallel Simulation
	2.1 Notations
	2.2 Discrete Event Scheduler
	2.3 Parallel Discrete Event Scheduler
	2.4 Out-of-Order Parallel Discrete Event Scheduler

	3 RISC Compiler and Simulator
	3.1 Segment Graph
	3.2 Conflict Analysis
	3.2.1 Static Analysis
	3.2.2 Dynamic Analysis

	3.3 Source Code Instrumentation
	3.4 Library Support
	3.5 Compiler Backend
	3.6 Simulator

	4 Out-of-Order Parallel Simulatable SystemC Subset
	4.1 SystemC Hierarchical Structure of Modules and Channels
	4.2 SystemC Threads
	4.3 SystemC Transaction Level Modeling (TLM)
	4.4 SystemC Datatypes
	4.5 SystemC Utilities and Other Constructs

	5 Conclusion
	Acknowledgements
	References
	A Appendix
	A.1 Manual Page of the RISC Compiler and Simulator
	A.2 Manual Page of the RISC Elaborator

