
OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 1

Out-of-Order Parallel Simulation
of SystemC Models

using the RISC Framework

Tutorial at Embedded Systems Week 2020
September 20, 2020

Rainer Dömer
doemer@uci.edu

Center for Embedded and Cyber-Physical Systems
University of California, Irvine

Virtual Tutorial Logistics

• ESWeek 2020 is a Virtual Conference
– This tutorial is virtual, too!

• Zoom Meeting ID: 985 6461 2963
– 9:00 AM - 1:00 PM EDT (GMT-4)
– https://uci.zoom.us/j/98564612963

– No meeting passcode needed

 Live Presentation via Zoom
 Session will be recorded for offline reference

 Presenter: Live on camera

 Audience: Please turn on your camera as well
Request-but-not-require policy

 Interactive Discussion: Please Participate
 Chat, Raise hand, Polls, Breakout rooms, Reactions…

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 2

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 2

Poll: Time Zone

• Which time zone are you in?
(Choose the closest one)
[Single Choice]
– Answer 1: PDT (Los Angeles) UTC-7

– Answer 2: EDT (New York) UC-4

– Answer 3: CEST (Paris) UTC+2

– Answer 4: IST (New Delhi) UTC+5:30

– Answer 5: CST (Beijing) UTC+8

– Answer 6: AEST (Sydney) UTC+10

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 3

Agenda

• Part 1: 9:00am EDT
Introduction to Out-of-Order Parallel Discrete Event Simulation

• Part 2: 9:40am EDT
Overcoming the Obstacles of IEEE SystemC Semantics

• Part 3: 10:20am EDT
RISC: Recoding Infrastructure for SystemC

• Part 4: 11:15am EDT
Hands-on Practical Training
with RISC Compiler and Simulator

• Part 5: 12:15pm EDT
Hands-on Practical Analysis
of Parallel Potential of SystemC Models

 Note: For hands-on participation, you will need a Linux account
on a multi-core host with Docker access to download RISC
(otherwise you are welcome to just watch the demos)

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 4

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 3

Out-of-Order Parallel Simulation
of SystemC Models

using the RISC Framework

Part 1: Introduction to
Out-of-Order Parallel Discrete Event Simulation

Rainer Dömer
doemer@uci.edu

Center for Embedded and Cyber-Physical Systems
University of California, Irvine

IEEE Standard 1666-2011

• The SystemC Language
– Official standard

– De-facto standard

• … for
– Modeling and

– Simulation

• … of systems containing
– Hardware and

– Software

 Discrete Event Simulation
– Accellera (sequential)

– RISC (parallel)

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 6

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 4

Discrete Event Simulation (DES)

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 7

10:1
10:2

10:3

20:5
20:4

20:6

30:7

0:0
T:Δth4th2 th3th1• SystemC uses Traditional DES

– Concurrent threads of execution

– Managed by a central scheduler

– Driven by events and time advances
• Delta cycle

• Time cycle

 Partial temporal order with barriers

• Cooperative Multi-Tasking
 IEEE 1666-2011 standard

 A single thread is active at any time
Does not exploit parallelism

Cannot utilize multiple cores

 Sequential simulation is slow

th0

Discrete Event Simulation (DES)

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 8

10:1
10:2

10:3

20:5
20:4

20:6

30:7

0:0
T:Δth4th2 th3th1• Specific Example:

Accellera SystemC
Proof-of-Concept Library

 uses an extra root thread
for the following tasks:
– Elaboration phase

– Scheduling
• Event notifications

• Channel updates

• Delta cycle updates

• Simulation time updates

– SC_METHOD calls
• (not shown)

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 5

Approaches for Faster Simulation

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 9

Sequential DE
simulation is slow

Improved Modeling Techniques
•Transaction-level modeling (TLM)
•TLM temporal decoupling
•Savoiu et al. [MEMOCODE’05]
•Razaghi et al.[ASPDAC’12]

Hardware-based Acceleration
•Sirowy et al. [DAC’10]
•Nanjundappa et al. [ASPDAC’10]
•Sinha et al. [ASPDAC’12]

SMP Parallel Simulation
•Fujimoto [CACM’90]
•Chopard et al. [ICCS’06]
•Ezudheen et al. [PADS’09]
•Mello et al. [DATE’10]
•Schumacher et al. [CODES’11]
•Chen et al. [TCAD’14]
•Yun et al. [TCAD’12]
•Schmidt et al. [DAC’17]
•and many others

Distributed Simulation
•Chandy et al. [TSE’79]
•Huang et al. [SIES’08]
•Chen et al. [CECS’11]

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 10

• Traditional DES Algorithm (sequential)
– Active threads

are managed
in a READY queue

– Waiting threads
are managed
in WAIT queues
• wait(event);

• wait(time);

– Simulation progress
• Delta cycle

• Time cycle

 Scheduler picks
a single thread
and executes it

Discrete Event Simulation (DES)

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 6

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 11

Parallel Discrete Event Simulation (PDES)

• Parallel DES Algorithm
– Active threads

are managed
in a READY queue

– Waiting threads
are managed
in WAIT queues

– Simulation progress
• Delta cycle

• Time cycle

 Scheduler
picks N threads
and executes
them in parallel

 N = number of available CPU cores

Parallel Discrete Event Simulation (PDES)

• Parallel DES Algorithm requires safe synchronization
– Locks and condition variables (e.g. POSIX multi-threading)

 Protected
scheduling
resources

 Protected
communication

 MT-safe
SystemC
primitives

 Example:
Life-cycle of a
SC_THREAD

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 12

start

notify

wait

end

execute

this==th_root

Add notified event to events' list N

Move(this, RUN, WAIT)

Move(this, RUN, COMPLETE)
Go(schedule)

Go(schedule)
sleepExit(sim)

Delete(this)

end

Yes

Yes

Yes

No

No

No Yes
No

Lock(L)

Lock(L)

Lock(L)

unLock(L)

Release acquired channel locks

Schedule (this);
unLock(L)

if (this != th_root) {
 Lock(L); signal(Cond_parent);
 wait(Cond_this, L); unLock(L); }

Re-acquire
released

channel locks

Schedule(this);
wait(Cond_this, L);

unLock(L)

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 7

Parallel Discrete Event Simulation (PDES)

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 13

10:1
10:2

10:3

20:5
20:4

20:6

30:7

0:0
T:Δth4th2 th3th1• Parallel DES [Fujimoto1990]

– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle

 Significant speed up!

– Cycle boundaries are
absolute barriers: Synchronous PDES

• Aggressive Asynchronous PDES
– Conservative Approaches

• Careful static analysis prevents conflicts

– Optimistic Approaches
• Conflicts are detected and addressed

(roll back)

Parallel Discrete Event Simulation (PDES)

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 14

10:1
10:2

10:3

20:5
20:4

20:6

30:7

0:0
T:Δth4th2 th3th1• Out-of-Order Parallel DES

– Threads execute in parallel iff
• in the same delta cycle, and

• In the same time cycle,

• OR if there are no conflicts!

 Breaks synchronization barrier

 Threads run as soon as possible,
even ahead of time

 Results in even higher speedup!
• [DATE’12], [IEEE TCAD’14]

– Needs compiler support for
data and event conflict analysis!
 Preserve the accuracy

of cause and effect relationship

 Accurate results, accurate timing

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 8

Summary and Analysis

• Traditional Discrete Event Simulation (DES)
– Simulator runs sequentially, executes one thread at a time

– Cannot utilize the parallelism of multi- or many-core hosts

• Parallel Discrete Event Simulation (PDES)
– Threads run in parallel (if at the same delta and time cycle)

– Simulation cycles are absolute barriers

• Out-of-order Parallel DE Simulation (OoO PDES)
– Non-conflict threads run in parallel and ahead-of-time [DATE’12]

– Maximum parallelism, order of magnitude speedup! [TCAD’14]

 Problem solved!?
 What about host platforms?

 What about accuracy?

 What about standard compliance?

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 15

Not quite!
Readily available.

Achievable with careful analysis.

That’s where the problem is!

Problem Definition

• What is given?
– Embedded systems are parallel

– SystemC is suitable and standard for system design

– Models exhibit explicit thread-level parallelism

– Multi- and many-core host platforms are readily available

• What do we want?
– Fastest Parallel Discrete Event Simulation

– For the SystemC language

• What is the objective?
– Maximize compliance with the IEEE 1666-2011 standard

 Why is this so difficult?
 There are “Seven Obstacles in the Way

of Standard-Compliant Parallel SystemC” [ESL’16]

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 17

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 9

Out-of-Order Parallel Simulation
of SystemC Models

using the RISC Framework

Part 2: Overcoming the Obstacles
of IEEE SystemC Semantics

Rainer Dömer
doemer@uci.edu

Center for Embedded and Cyber-Physical Systems
University of California, Irvine

Compliance with IEEE SystemC Semantics

• IEEE Standard 1666™-2011
– Revision of IEEE Std. 1666-2005

– Standard SystemC®

Language Reference Manual

…unfortunately stands in the way
of parallel SystemC simulation!

 SystemC Evolution Day 2016
 “Seven Obstacles in the Way

of Parallel SystemC Simulation”,
Rainer Doemer, Munich, Germany, May 2016.

 SystemC standard

… must embrace true parallelism

… must evolve in a major revision (3.x)

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 19

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 10

Poll: SystemC Evolution

• Take a guess, what happened?
[Single Choice]
– Answer 1: The speaker was thrown off the stage

– Answer 2: SystemC Revolution:
Major changes to SystemC standard

– Answer 3: SystemC Evolution:
Minor changes to SystemC standard

– Answer 4: Nothing, SystemC standard didn't change.

– Answer 5: Parallel simulation of SystemC changed.

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 20

Compliance with IEEE SystemC Semantics

• SystemC Evolution!?
– Nothing substantial has changed…

• In absence of major changes to SystemC standard,
my group worked hard on the compliance problem
 “Let’s make the best of it!”

– Accept SystemC standard as it is (well, most of it)

– Build the best parallel SystemC simulator possible

– Aim for maximum compliance with the standard

 We took this risk, and created RISC!
 Recoding Infrastructure for SystemC

 RISC pushes the limits to overcome the 7 obstacles!

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 21

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 11

Obstacle 1: Co-Routine Semantics

• Fact: IEEE 1666-2011 requires co-operative multitasking
 Quotes from Section “4.2.1.2 Evaluation phase” (pages 17, 18):

• Problem: Uninterrupted execution guarantee

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 22

Since process instances execute without interruption, only a single process instance can be
running at any one time, […]. A process shall not pre-empt or interrupt the execution of another
process. This is known as co-routine semantics or co-operative multitasking.
[…]
The scheduler is not pre-emptive. An application can assume that a method process will execute
in its entirety without interruption, and a thread or clocked thread process will execute the code
between two consecutive calls to function wait without interruption.

An implementation running on a machine that provides hardware support for concurrent processes
may permit two or more processes to run concurrently, provided that the behavior appears identical
to the co-routine semantics defined in this subclause. In other words, the implementation would
be obliged to analyze any dependencies between processes and to constrain their execution to
match the co-routine semantics.

Obstacle 1: Co-Routine Semantics

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 23

10:1
10:2

10:3

20:5
20:4

20:6

30:7

0:0
T:Δth4th2 th3th1• Parallel DES [Fujimoto 1990]

– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle

 Order of magnitude speed up!

 IEEE 1666 Requirement:
“The scheduler is not pre-emptive.”

 SystemC: guaranteed safe!

 PDES: not safe! (race condition)

int x; // shared variable

void thread1() void thread2()
{ x = 0; { x = 7;
x = x + 1; x = x * 6;
cout << x; cout << x;

} }

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 12

Obstacle 1: Co-Routine Semantics

• Fact: IEEE 1666-2011 requires co-operative multitasking
 Quotes from Section “4.2.1.2 Evaluation phase” (pages 17, 18):

• Problem: Uninterrupted execution guarantee

• Proposal: Explicitly allow parallel execution, preemption
– Process instances at the same time (t,δ) may execute in parallel

• Model designer must write thread safe code, avoid race conditions

 Parallel systems, parallel models, parallel programming

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 24

Since process instances execute without interruption, only a single process instance can be
running at any one time, […]. A process shall not pre-empt or interrupt the execution of another
process. This is known as co-routine semantics or co-operative multitasking.
[…]
The scheduler is not pre-emptive. An application can assume that a method process will execute
in its entirety without interruption, and a thread or clocked thread process will execute the code
between two consecutive calls to function wait without interruption.

An implementation running on a machine that provides hardware support for concurrent processes
may permit two or more processes to run concurrently, provided that the behavior appears identical
to the co-routine semantics defined in this subclause. In other words, the implementation would
be obliged to analyze any dependencies between processes and to constrain their execution to
match the co-routine semantics.

Overcoming the Obstacles

• Obstacle 1:
Resolved!

 Introduce
a dedicated
SystemC
Compiler
 Automatic

analysis of
parallel
access
conflicts

 Run SystemC processes in parallel if there are no conflicts

 Faster simulation

 Results remain the same

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 25

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 13

Obstacle 2: Simulator State

• Fact: Discrete Event Simulation (DES) is presumed
 Example from IEEE 1666-2011, page 31: sysc/kernel/sc_simcontext.h

• Problem: Parallel Discrete Event Simulation (PDES)
is different from sequential DES

– After elaboration, there may be multiple running threads

– Scheduling may happen while some threads are still running

• Proposal: Carefully review simulator state primitives
and revise as needed for PDES

 Adapt the functions and APIs for parallel execution semantics

 The general notion of shared state needs attention…

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 26

[...]
bool sc_pending_activity_at_current_time();
bool sc_pending_activity_at_future_time();
bool sc_pending_activity();
bool sc_time_to_pending_activity();
[...]

Overcoming the Obstacles

• Obstacle 2:
Ongoing…

 Review and
revise the
SystemC API
 Slightly adjust

the semantics

 Maximize
compliance
with standard

 For APIs
on the slide:
Users’ expectations can be met

 Example: SystemC integration with virtual platforms works fine

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 27

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 14

Obstacle 3: Lack of Thread Safety

• Fact: Primitives are generally not multi-thread safe
 Suspicious example from IEEE 1666-2011, page 194:

• Problem: Parallel execution may lead to race conditions
– Race conditions result in non-deterministic/undefined behavior

– Explicit protection (e.g. by mutex locks) is cumbersome

– Identifying problematic constructs is difficult
• Example: class sc_context, commented as “co-routine safe”

• Proposal: Require all primitives to be multi-thread safe
– Carefully revise the proof-of-concept SystemC library
 Encouraging item: async_request_update is thread-safe!

 See “5.15 sc_prim_channel”, IEEE 1666-2011, page 121

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 28

[...]
sc_length_param length10(10);
sc_length_context cntxt10(length10); // length10 now in context
sc_int_base int_array[2]; // Array of 10-bit integers
[...]

Overcoming the Obstacles

• Obstacle 3:
Ongoing…

 Revise
SystemC
primitives
for
multi-thread
safety
 Protection by

inserted locks

 Store state
in local or thread-local storage

 For deterministic debugging,
user can control number of parallel threads (e.g. set to 1)

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 29

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 15

Obstacle 4: Class sc_channel

• Fact: sc_channel is an alias type for sc_module
 IEEE 1666-2011, Section “5.2.23 sc_behavior and sc_channel” (page 56):

 systemc-2.3.1/include/sysc/kernel/sc_module.h

• Problem: Alias type is only another name, no new type
– Language does not distinguish modules and channels

 No separation of communication and computation
• Breaks a key system-level design principle…

• Proposal: Class sc_channel, derived from sc_module
Module encapsulates computation (hosts threads/processes)

Channel encapsulates communication (implemented interfaces)
Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 30

[...]
typedef sc_module sc_channel;
typedef sc_module sc_behavior;
[...]

The typedefs sc_behavior and sc_channel are provided for users to express their intent.
NOTE—There is no distinction between a behavior and a hierarchical channel
other than a difference of intent. Either may include both ports and public member functions.

Overcoming the Obstacles

• Obstacle 4:
Fixed!

 Derive
sc_channel
from
base class
sc_module
 Minimal

change
in SystemC
headers

 Two different types at compile-time

 Easy distinction in static analysis

 No known negative side-effects

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 31

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 16

• Fact: Channel concept has disappeared
 “The Definitive Guide to SystemC: TLM-2.0 and the IEEE 1666-2011 Standard”,

Presentation by David Black, Doulos, at DAC’15 Training Day

• Problem:
Where is
the channel?

Obstacle 5: TLM-2.0

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 32

• Fact: Channel concept has disappeared
 “The Definitive Guide to SystemC: TLM-2.0 and the IEEE 1666-2011 Standard”,

Presentation by David Black, Doulos, at DAC’15 Training Day

• Problem:
Where is
the channel?

– Interface methods
are well-defined,
but not contained

– Separation of concerns
“Computation ≠

Communication”
principle is broken

– Proposal:
Encapsulate communication methods in channels

Obstacle 5: TLM-2.0

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 33

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 17

Overcoming Obstacle 5

• Classic TLM: Producer-Consumer Example

 Modules wrap computation, channels wrap communication

 Threads operate in their own modules or protected channels

 Well-behaved execution in safe execution contexts

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 34

Home

Door

MarketMarket

Farm

FarmerWorkers Customer

work

Eggs
eat

Gate
sell buy

Overcoming Obstacle 5

• New TLM-2.0: Producer-Consumer Example

 No channels! Threads operate directly in others’ modules

 Fast, but dangerous execution in foreign territory

 Requires deep analysis and well-designed models

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 35

Farm

FarmerWorkers

Home

Customer

work

Eggs
eat

Back
Door

Barn
Doortake

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 18

Overcoming the Obstacles

• Obstacle 5:
Reevaluated,
Resolved!

 Socket Call
Path (SCP)
analysis

 Variable
Entanglement
analysis
 Compile-time

analysis can
identify target methods executed by TLM-2.0 calls

 Support for interconnect modules and DMI
[CODES+ISSS’19, ACM TECS]

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 36

Obstacle 6: Sequential Mindset

• Fact: SC_METHOD is preferred over SC_THREAD,
context switches are considered overhead

 IEEE 1666-2011, Section 5.2.11 on threads (page 44):

• Problem: Sequential modeling is encouraged
– However, systems are parallel by nature, so should be models

– Avoiding context switches is the wrong optimization criterion

• Proposal: Use actual threads, eliminate SC_METHOD,
identify dependencies among threads

 Promote parallel mindset, with true thread-level parallelism
• Speed due to parallel execution, not due to fewer context switches

 Explicitly express task relations (use e.notify(), wait(e))
• Synchronize, communicate through events and channels

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 37

Each thread or clocked thread process requires its own execution stack.
As a result, context switching between thread processes may impose a simulation overhead
when compared with method processes.

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 19

Overcoming the Obstacles

• Obstacle 6:
Not a problem

 SC_METHOD,
SC_THREAD,
SC_CTHREAD
can all be
supported
 Static analysis

per
process type

 SC_METHOD
execution by dedicated invoker threads

 Nice optimization problem
for efficient grouping with minimal conflicts

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 38

Obstacle 7: Temporal Decoupling

• Fact: TD is designed to speed up sequential DES
 IEEE 1666-2011, Section 12.1 on “TLM-2.0 global quantum” (page 453):

– Abstraction trades off accuracy for higher simulation speed

• Problem: PDES is a different foundation than DES
– TD design assumptions are not necessarily true for PDES

– Global time quantum is a technical obstacle (race condition)

• Proposal: Reevaluate costs/benefits, redesign if needed
– Analyze TD idea for PDES, adopt advantages, drop drawbacks

• Avoid tlm_global_quantum, promote wait(time)

– Consider the use of a compiler to optimize scheduling, timing
• Out-of-Order PDES is one solution (fully automatic, accurate)

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 39

Temporal decoupling permits SystemC processes to run ahead of simulation time for an amount
of time known as the time quantum and is associated with the loosely-timed coding style.
Temporal decoupling permits a significant simulation speed improvement
by reducing the number of context switches and events.

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 20

Overcoming the Obstacles

• Obstacle 7:
Ongoing…

 Investigation
needs
examples

 Speed vs.
accuracy
tradeoff
in PDES
 Out-of-order

PDES can
likely achieve the same benefit
Without loss of accuracy (?)

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 40

Summary and Analysis

• Overcoming 7 Obstacles towards Parallel SystemC
1. Co-Routine Semantics: Resolved
2. Simulator State: Ongoing…
3. Lack of Thread Safety: Ongoing…
4. Class sc_channel: Fixed
5. TLM-2.0: Reevaluated, Resolved
6. Sequential Mindset: Not a problem
7. Temporal Decoupling: Ongoing…

 So the problem is not solved yet,
but we’re getting closer!

 Next, let’s look at the state of the art:
Recoding Infrastructure for SystemC (RISC)

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 41

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 21

Poll: SystemC Future

• Towards truly parallel simulation, do you expect the
SystemC standard to further evolve?
[Single Choice]
– Answer 1: Yes, SystemC will evolve.

– Answer 2: No, SystemC will remain as is.

– Answer 3: No, SystemC will be replaced
with another language.

– Answer 4: Not sure, I don't know.

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 42

Out-of-Order Parallel Simulation
of SystemC Models

using the RISC Framework

Part 3: RISC:
Recoding Infrastructure for SystemC

Rainer Dömer
doemer@uci.edu

Center for Embedded and Cyber-Physical Systems
University of California, Irvine

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 22

Recoding Infrastructure for SystemC (RISC)

• Advanced Parallel SystemC Simulation
– Aggressive PDES on many-core host platforms

– Maximum compliance with IEEE SystemC semantics

• Introduction of a Dedicated SystemC Compiler
– Advanced conflict analysis for safe parallel execution

– Automatic model instrumentation and code generation

• Parallel SystemC Simulator
– Out-of-order parallel scheduler, multi-thread safe primitives

– Multi- and many-core host platforms (e.g. Intel® Xeon Phi™)

• Open Source
– Freely available for evaluation and collaboration

– BSD license

– Thanks to Intel Corporation!

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 44

Poll: Simulator Run Time

• For your larger SystemC design models,
how long is the typical simulator run time?
[Single Choice]
– Answer 1: A few seconds

– Answer 2: About a minute

– Answer 3: About 10 minutes

– Answer 4: About an hour

– Answer 5: Several hours

– Answer 6: About a day

– Answer 7: Several days.

– Answer 8: Not sure, I don't know.

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 45

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 23

Recoding Infrastructure for SystemC (RISC)

• Out-of-Order PDES Key Ideas
1. Dedicated SystemC compiler with advanced model analysis

 Static conflict analysis based on Segment Graphs

2. Parallel simulator with out-of-order scheduling
 Fast decision making at run-time, optimized mapping

• Fundamental Data Structure: Segment Graph
– Key to semantics-compliant out-of-order execution [DATE’12]

– Key to prediction of future thread state [DATE’13]
• “Optimized Out-of-Order Parallel DE Simulation Using Predictions”

– Key to May-Happen-in-Parallel Analysis [DATE’14]
• “May-Happen-in-Parallel Analysis based on Segment Graphs

for Safe ESL Models“ (Best Paper Award)

– Combined: “OoO PDES for TLM” [IEEE TCAD’14]
• Comprehensive summary with HybridThreads extension

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 46

Recoding Infrastructure for SystemC (RISC)

• RISC Software Stack
 Recoding Infrastructure for SystemC

– C/C++ foundation

– ROSE compiler (from LLNL)

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 47

RISC

C/C++ Foundation

ROSE IR

• ROSE Internal Representation

• Explicit support for

• Source code analysis

• Source-to-source
transformations

Source:
Lawrence Livermore National Laboratory (LLNL)

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 24

Recoding Infrastructure for SystemC (RISC)

• RISC Software Stack
 Recoding Infrastructure for SystemC

– SystemC Internal
Representation

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 48

RISC

C/C++ Foundation

ROSE IR

SystemC IR

• Class hierarchy to represent
SystemC objects

RISC Compiler

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 49

RISC

Segment Graph

C/C++ Foundation

ROSE IR

SystemC IR

• RISC Software Stack
 Recoding Infrastructure for SystemC

1) Segment Graph construction

2) Parallel access conflict analysis

Compilation,
Simulation

SystemC Compiler

RISCsystemc.h

Model.cpp

Segment Graph
Construction

Parallel Access
Conflict Analysis

…
Model

_par.cpp

SystemC Model Parallel
C++ Model

Seg 2

Seg 1

Seg 3

Seg 4 Seg 5

Seg 6

Segment Graph

Step 1:
Build a Segment Graph (SG)

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 25

RISC Compiler

• Segment Graph Construction
– Segment Graph (SG) is a directed graph

• Nodes: Segments

Code statements executed
between two scheduling steps

– Expression statements

– Control flow statements (if, while, …)

– Function calls

• Edges: Segment boundaries

 Primitives that trigger scheduler entry
– wait(event)

– wait(time)

 Segment Graph can be constructed statically
by the compiler from the model source code

• Let’s look into this in detail by use of a few examples!

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 50

Seg 2

Seg 1

Seg 3

Seg 4 Seg 5

Seg 6

Segment Graph

RISC Compiler

• Segment Graph Construction
– Example: Source code and Segment Graph

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 51

int a;

if(cond) {

int b;

wait(1);

int c;

} else {

int d;

}

int e;

wait(2);

int f;

while(cond) {

int g;

}

int h;

int a;
condition
int b;
int d;
int e;

int c;
int e;

int f;
condition
int g;
int h

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 26

RISC Compiler

• Segment Graph Construction
– Example for straight-line code

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 52

void straight()
{

x = 42;
int xx = 43;
int yy;
yy;
int o = y;

wait(10, SC_NS);

wait();

int kk;

wait();

int oo;
}

Segment ID: 0

input_straight.cpp:24 (this) -> x = 42

input_straight.cpp:25 int xx = 43;

input_straight.cpp:26 int yy;

input_straight.cpp:27 yy

input_straight.cpp:28 int o =(this) -> y;

Segment ID: 1 (input_straight.cpp:30)

Segment ID: 2 (input_straight.cpp:32)

input_straight.cpp:34 int kk;

Segment ID: 3 (input_straight.cpp:37)

input_straight.cpp:39 int oo;

RISC Compiler

• Segment Graph Construction
– Example for conditional control flow
 if, if-else, switch-case

(with break)

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 53

void if_statement()
{

wait();
int aaa;
if(test) {

int bbb;
wait();
int ccc;

}
int ddd;
wait();
int eee;

}

Segment ID: 0

Segment ID: 1 (input_if_else.cpp:27)

compilerGenerated:0 (this) -> test

input_if_else.cpp:34 int ddd;

input_if_else.cpp:28 int aaa;

input_if_else.cpp:30 int bbb;

Segment ID: 2 (input_if_else.cpp:31)

input_if_else.cpp:32 int ccc;

input_if_else.cpp:34 int ddd;

Segment ID: 3 (input_if_else.cpp:35)

input_if_else.cpp:36 int eee;

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 27

RISC Compiler

• Segment Graph Construction
– Example for repetition (loops)
 while, do-while, for

(with break, continue)

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 54

void while_continue_statement()
{

int kk;
while(test){

int aa;
wait();
int bb;
if(test1) {

continue;
}
int oo;
wait();
int cc;

}
int dd;
wait();

} Segment ID: 3 (input_while_continue.cpp:62)

Segment ID: 0

input_while_continue.cpp:49 int kk;

compilerGenerated:0 (this) -> test

input_while_continue.cpp:51 int aa;

input_while_continue.cpp:61 int dd;

Segment ID: 2 (input_while_continue.cpp:58)

input_while_continue.cpp:59 int cc;

compilerGenerated:0 (this) ->; test

input_while_continue.cpp:51 int aa;

input_while_continue.cpp:61 int dd;

Segment ID: 1 (input_while_continue.cpp:52)

input_while_continue.cpp:53 int bb;

compilerGenerated:0 (this) -> test1

input_while_continue.cpp:55 continue;

input_while_continue.cpp:57 int oo;

compilerGenerated:0 (this) -> test

input_while_continue.cpp:51 int aa;

input_while_continue.cpp:61 int dd;

RISC Compiler

• Segment Graph Construction
– Example for function calls
 f(x), return

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 55

int g1()
{

int g_0;
wait();
int g_1 = 33;
if(g_1 == 88) {

int g_2;
wait();
int g_3 = 44;
return 43;
int DEAD_CODE;

}
int g_4;
wait();
int g_5;
wait();
int g_6;
int return_value = 2;
return return_value;

}

Segment ID: 1 (input_function_calls.cpp:152)

input_function_calls.cpp:153 int bb;

input_function_calls.cpp:154 (this) -> g1();

input_function_calls.cpp:162 int g_0;

Segment ID: 2 (input_function_calls.cpp:163)

input_function_calls.cpp:164 int g_1 = 33;

input_function_calls.cpp:166 g_1 == 88

input_function_calls.cpp:167 int g_2;

input_function_calls.cpp:173 int g_4;

Segment ID: 3 (input_function_calls.cpp:168)

input_function_calls.cpp:169 int g_3 = 44;

input_function_calls.cpp:170 43

input_function_calls.cpp:155 int cc;

Segment ID: 5 (input_function_calls.cpp:176)

input_function_calls.cpp:177 int g_6;

input_function_calls.cpp:178 int return_value = 2;

input_function_calls.cpp:179 return_value

input_function_calls.cpp:155 int cc;

Segment ID: 4 (input_function_calls.cpp:174)

input_function_calls.cpp:175 int g_5;

Segment ID: 6 (input_function_calls.cpp:156)

input_function_calls.cpp:157 int dd;

Segment ID: 0

input_function_calls.cpp:151 int aa;

void f()
{

int aa;
wait();
int bb;
g1();
int cc;
wait();
int dd;

}

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 28

void main()
{ wait();

f();
wait();

}

RISC Compiler

• Segment Graph Construction
– Example for recursive function calls

 Direct, indirect recursion

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 56

void f()
{ wait();

if(xx>0) {
wait();
g();
wait();

}
wait();
return;

}

void g()
{ xx--;

wait();
if(xx>0) {

wait();
int before_rec;
f();
int after_rec;
wait();

} else {
wait();
return;

}
}

Segment ID: 0

Segment ID: 7 (input_recursive.cpp:163)

Segment ID: 10 (input_recursive.cpp:153)

Segment ID: 9 (input_recursive.cpp:178)

Segment ID: 1 (input_recursive.cpp:151)

input_recursive.cpp:152 (this) -> recursive1();

Segment ID: 2 (input_recursive.cpp:159)

input_recursive.cpp:160 (this) -> xx > 0

Segment ID: 5 (input_recursive.cpp:180)

compilerGenerated:0

Segment ID: 6 (input_recursive.cpp:174)

input_recursive.cpp:175 int before_rec;

input_recursive.cpp:176 (this) -> recursive1()

Segment ID: 4 (input_recursive.cpp:172)

input_recursive.cpp:173 (this) -> xx > 0

Segment ID: 8 (input_recursive.cpp:165)

compilerGenerated:0

input_recursive.cpp:177 int after_rec;

Segment ID: 3 (input_recursive.cpp:161)

input_recursive.cpp:162 (this) -> recursive2();

input_recursive.cpp:171 (this) -> xx--

RISC Compiler

• Parallel Access Conflict Analysis for Segments
– Need to comply with SystemC LRM [IEEE Std. 1666™]

• Cooperative (or co-routine) multitasking semantics
– “process instances execute without interruption”

– System designer “can assume that a method process
will execute in its entirety without interruption”

 A parallel implementation “would be obliged
to analyze any dependencies between processes and
constrain their execution to match the co-routine semantics.”

– Must avoid race conditions when using shared variables!
 Prevent conflicting segments to be scheduled in parallel

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 57

Conflict Seg 1 Seg 2 Seg 3

Seg 1 True

Seg 2 True True

Seg 3 True

Seg 3
R: a, b
W: x, y
RW:

Seg 2
R: a, b
W: x
RW: z

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 29

RISC Compiler

• Parallel Access Conflict Analysis for Segments
– Variable analysis for Read, Write, and Read/Write accesses

– Example:

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 58

class Conflict: public sc_module {
SC_CTOR(Conflict)
{ SC_THREAD(thread1);

SC_THREAD(thread2);
}
int x, y, z;

void thread1()
{

int a;
a = 2;
wait();
a = x + y;
wait();
z++;

}
};

void thread2()
{

int b = 2;
x = y;
wait();
x = y * z;
wait();
z++;
wait();
x++;

}

Segment ID: 0

conflict.cpp:24 int a;

conflict.cpp:25 a = 2

Segment ID: 3

conflict.cpp:34 int b = 2;

conflict.cpp:35 x = y

Segment ID: 1 (conflict.cpp:26)

conflict.cpp:27 a = x + y

Segment ID: 2 (conflict.cpp:28)

conflict.cpp:29 z++

Segment ID: 4 (conflict.cpp:36)

conflict.cpp:37 x = y * z

Segment ID: 5 (conflict.cpp:38)

conflict.cpp:39 z++

Segment ID: 6 (conflict.cpp:40)

conflict.cpp:41 x++

Segment Graph

Segment ID: 0

conflict.cpp:24 int a;

conflict.cpp:25 a = 2

Segment ID: 3

conflict.cpp:34 int b = 2;

conflict.cpp:35 x = y

Segment ID: 1 (conflict.cpp:26)

conflict.cpp:27 a = x + y

Segment ID: 2 (conflict.cpp:28)

conflict.cpp:29 z++

Segment ID: 4 (conflict.cpp:36)

conflict.cpp:37 x = y * z

Segment ID: 5 (conflict.cpp:38)

conflict.cpp:39 z++

Segment ID: 6 (conflict.cpp:40)

conflict.cpp:41 x++

RISC Compiler

• Parallel Access Conflict Analysis for Segments
– Variable analysis for Read, Write, and Read/Write accesses

– Example:

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 59

Segment Graph
Variable

Accesses

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 30

RISC Compiler

• Parallel Access Conflict Analysis for Segments
– Variable analysis for Read, Write, and Read/Write accesses

– Example:

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 60

Variable
Accesses Data Conflict Table

x

x

Step 2:
Perform Conflict Analysis

RISC Compiler

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 61

RISC

Segment Graph

C/C++ Foundation

ROSE IR

SystemC IR

• RISC Software Stack
 Recoding Infrastructure for SystemC

1) Segment Graph construction

2) Parallel access conflict analysis

Compilation,
Simulation

SystemC Compiler

RISCsystemc.h

Model.cpp

Segment Graph
Construction

Parallel Access
Conflict Analysis

…
Model

_par.cpp

SystemC Model Parallel
C++ Model

Seg 2

Seg 1

Seg 3

Seg 4 Seg 5

Seg 6

Segment Graph

Conflict Seg 1 Seg 2 Seg 3

Seg 1 True

Seg 2 True True

Seg 3 True

Seg 3
R: a, b
W: x, y
RW:

Seg 2
R: a, b
W: x
RW: z

Instrumentation!

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 31

SystemC Compiler and Simulator

• Compiler and Simulator work hand in hand
– Compiler performs conservative static analysis

– Analysis results are passed to the simulator

– Simulator can make safe scheduling decisions quickly

 Automatic Model Instrumentation
 Static analysis results are inserted into the source code

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 62

RISC Simulator

C++
Compiler

Out-of-Order
Parallel

Simulation

SystemC Compiler

RISCsystemc.h

Model.cpp

… Source Code
Instrumentation

systemc
_par.h

Model
_par.cpp

Input Model

Parallel
SystemC
Library

Parallel
C++ Model

Model Instrumentation:
Segment and Instance IDs
Data/Event Conflict Tables

Time Advance Tables

• Simulator Kernel with Out-of-Order Parallel Scheduler
– Conceptual OoO PDES execution

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 63

RISC Simulator

Issue
Threads

Issue threads…

• truly in parallel and out-of-order

• whenever they are ready

• and have no conflicts!

 Fast conflict table lookup

 Optimized thread-to-core
mapping

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 32

Experiments and Results

• Mandelbrot Renderer (Graphics Pipeline Application)
– Mandelbrot Set

• Mathematical set of points
in complex plane

– Two-dimensional fractal shape

• High computation load
– Recursive/iterative function

• Embarrassingly parallel
– Parallelism at pixel level

– SystemC Model
• TLM abstraction

• Horizontal image slices

• Highly configurable

• Parallelism parameter
from 1 to 256 slices

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 64

Top

Stimulus Monitor

Platform

DUT

din dout

Coordinator

M M M M

Experiments and Results

• Mandelbrot Renderer (Graphics Pipeline Application)
 Simulated Graphics Demonstration

(when network delays prevent actual graphical demo)

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 65

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 33

Experiments and Results

• Mandelbrot Renderer (Graphics Pipeline Application)
– Simulator run times on 16-core Intel® Xeon® multi-core host

– 2 CPUs at 2.7 GHz, 8 cores each, 2-way hyper-threaded

– RISC V0.2.1, Posix-threads

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 66

Parallel
Slices

DES PDES OOO PDES

Run
Time

CPU
Load

Run
Time

CPU
Load

Speedup
Run
Time

CPU
Load

Speedup

1 162.13 s 99% 162.06 s 100% 1.00 x 161.90 s 100% 1.00 x
2 162.19 s 99% 96.50 s 168% 1.68 x 96.48 s 168% 1.68 x
4 162.56 s 99% 54.00 s 305% 3.01 x 53.85 s 304% 3.02 x
8 163.10 s 99% 29.89 s 592% 5.46 x 30.05 s 589% 5.43 x

16 164.01 s 99% 19.03 s 1050% 8.62 x 20.08 s 997% 8.17 x
32 165.89 s 99% 11.78 s 2082% 14.08 x 11.99 s 2023% 13.84 x
64 170.32 s 99% 9.79 s 2607% 17.40 x 9.85 s 2608% 17.29 x

128 174.55 s 99% 9.34 s 2793% 18.69 x 9.39 s 2787% 18.59 x
256 185.47 s 100% 8.91 s 2958% 20.82 x 8.90 s 2964% 20.84 x

• Many-Core Target Platform: Intel® Xeon Phi™
– Many Integrated Core (MIC) architecture

• 1 Coprocessor 5110P CPU at 1.052 GHz

• 60 physical cores with 4-way hyper-threading
– Appears as regular Linux host with 240 cores

• Up to 8 lanes available for vector processing

 RISC extended for exploiting 2 types of parallelism
– Out-of-Order PDES: thread-level parallelism

– Intel® compiler SIMD: data-level parallelism

 RISC SIMD Advisor identifies functions with data-level
parallelism suitable for SIMD vectorization

 DAC ’17 paper:
"Exploiting Thread and Data Level Parallelism
for Ultimate Parallel SystemC Simulation”

Experiments and Results

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 67

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 34

PAR MT SIMD MT+SIMD
1
2
4
8

16
32
64

128
256

• Many-Core Target Platform: Intel® Xeon Phi™
– Exploiting thread- and data-level parallelism [DAC’17]

– Mandelbrot renderer (graphics pipeline application)

• Experimental Results:

 Increasing degree of parallelism (PAR = number of threads)
reaches a combined multi-threading (MT)
and data-level (SIMD) speedup of up to 212x!

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 68

0

50

100

150

200

250

1 2 4 8 16 32 64 128 256

MT

SIMD

MT+SIMD

Experiments and Results

PAR MT SIMD MT+SIMD
1 1.00
2 1.68
4 3.04
8 5.84

16 11.37
32 21.32
64 41.07

128 46.29
256 49.90

PAR MT SIMD MT+SIMD
1 1.00 6.92
2 1.68 6.92
4 3.04 6.92
8 5.84 6.92

16 11.37 6.92
32 21.32 6.91
64 41.07 6.90

128 46.29 6.89
256 49.90 6.87

PAR MT SIMD MT+SIMD
1 1.00 6.92 6.94
2 1.68 6.92 11.77
4 3.04 6.92 21.19
8 5.84 6.92 40.10

16 11.37 6.92 72.52
32 21.32 6.91 137.21
64 41.07 6.90 208.41

128 46.29 6.89 212.96
256 49.90 6.87 194.19

Speedup

Threads

Experiments and Results

• Parallel Benchmark Results (Xeon Phi Coprocessor, 60x4 cores)

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 69

0x

20x

40x

60x

80x

100x

120x

0

50

100

150

200

250

300

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

fibo elapsed time [sec]

fmul elapsed time [sec]

fibo rel. speedup

fmul rel. speedup

Parallel Benchmark Results
on Intel® Xeon Phi™

80x

103x

E
xe

cu
tio

n
T

im
e

[s
ec

]

S
pe

ed
up

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 35

Conclusion

 Recoding Infrastructure for SystemC (RISC)

• Out-of-Order Parallel SystemC Simulation
– Aggressive PDES on many-core host platforms

– Maximum compliance with IEEE SystemC semantics

• Introduction of a Dedicated SystemC Compiler
– Advanced conflict analysis for safe parallel execution

– Automatic model instrumentation and code generation

• Parallel SystemC Simulator
– Out-of-order parallel scheduler, multi-thread safe primitives

– Multi- and many-core host platforms (e.g. Intel® Xeon Phi™)

• Open Source
– Freely available for use and collaboration (BSD license)

– Thanks to Intel Corporation!

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 70

Acknowledgments

• For solid work, fruitful discussions, and honest feedback,
I would like to thank:

– My team at UCI
• Emad Arasteh, Aditya Harit, Vivek Govindasamy

• Zhongqi Cheng, Daniel Mendoza

• Tim Schmidt, Guantao Liu

• Farah Arabi, Spencer Kam

– Our collaborators at Intel
• Ajit Dingankar

• Desmond Kirkpatrick

• Abhijit Davare

• Philipp Hartmann

– And many others…

• This work has been supported in part by substantial funding
from Intel Corporation. Thank you!

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 71

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 36

Out-of-Order Parallel Simulation
of SystemC Models

using the RISC Framework

Part 4: Hands-on Practical Training
with RISC Compiler and Simulator

Rainer Dömer
doemer@uci.edu

Center for Embedded and Cyber-Physical Systems
University of California, Irvine

RISC Open Source Releases

• [RISCv062] Z. Cheng, R. Dömer, A. Harit.
RISC Compiler and Simulator, Release V0.6.2. September 2020.
– http://cecs.uci.edu/~doemer/risc.html#RISC062

• [RISCv060] Z. Cheng, R. Dömer, S. Kam, and D. Mendoza.
RISC Compiler and Simulator, Release V0.6.0. September 2019.

• [RISCv050] Z. Cheng, R. Dömer, D. Mendoza, and T. Schmidt.
RISC Compiler and Simulator, Release V0.5.0. September 2018.

• [RISCv042] Z. Cheng, R. Dömer, D. Mendoza, and T. Schmidt.
RISC Compiler and Simulator, Release V0.4.2. June 2018.

• [RISCv040] R. Dömer, G. Liu, and T. Schmidt.
RISC Compiler and Simulator, Release V0.4.0. July 2017.

• [RISCv030] R. Dömer, G. Liu, and T. Schmidt.
RISC Compiler and Simulator, Beta Release V0.3.0. September 2016.

• [RISCv021] R. Dömer, G. Liu, and T. Schmidt.
RISC Compiler and Simulator, Alpha Release V0.2.1. October 2015.

• [RISCv020] R. Dömer, G. Liu, and T. Schmidt.
RISC Compiler and Simulator, Alpha Release V0.2.0. September 2015.

• [RISCv010] R. Dömer, G. Liu, and T. Schmidt.
RISC API, Alpha Release V0.1.0. June 2014.

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 73

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 37

RISC Open Source Releases

• RISC Compiler and Simulator, Release V0.6.2
 http://www.cecs.uci.edu/~doemer/risc.html#RISC062

• Installation notes and script: INSTALL, Makefile

• Open source tar ball: risc_v0.6.2.tar.gz

• Docker script and container: Dockerfile

• Doxygen documentation: RISC API, OOPSC API
• Tool manual pages: risc, visual, sysdot …

• BSD license terms: LICENSE

– Companion Technical Report
• CECS Technical Report 19-04: CECS_TR_19_04.pdf

 Docker container:
 https://hub.docker.com/r/ucirvinelecs/risc062/

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 74

bash# docker pull ucirvinelecs/risc062
bash# docker run -it ucirvinelecs/risc062
[dockeruser]# cd demodir
[dockeruser]# make play_demo

RISC Compiler Tool Flow

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 75

RISC
OoO Parallel
Simulation

Out-of-order Parallel

(10x – 100x)

RISC
Compiler

Parallel
Executable

Multi- / Many-
Core Host

RISC
Library

SystemC
Model

system
c.h

Header
File

• Compile and
simulate with
Accellera:
– g++ play.cc …

– ./play_seq

• Compile and
simulate with
RISC:
– risc play.cc …

– ./play_ooo

• Measure simulator
run time:
– /usr/bin/time …

Traditional
SystemC

Simulation

Sequential

(1x)

C++
Compiler

Executable

Host PC

Accellera
Library

SystemC
Model

system
c.h

Header
File

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 38

Demo Example 1

• Conceptual DVD Player, TLM-1.0 style
– Parallel video and audio decoding with different frame rates

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 76

Video
30 FPS

2 Audio Channels
38.28 FPS

Multimedia
input

stream

DUT

Video
Codec

Left
Audio
Codec

Right
Audio
Codec

DUT
Video

Monitor
Left

Speaker
Right

Speaker

Stimulus

1: SC_MODULE(VideoCodec)
2: { sc_port<i_receiver> p1;
3: sc_port<i_sender> p2;
4: …
5: while(1) {
6: p1->receive(&inFrm);
7: outFrm = decode(inFrm);
8: wait(33330, SC_US);
9: p2->send(outFrm);

10: }
11: };

1: SC_MODULE(AudioCodec)
2: { sc_port<i_receiver> p1;
3: sc_port<i_sender> p2;
4: …
5: while(1) {
6: p1->receive(&inFrm);
7: outFrm = decode(inFrm);
8: wait(26120, SC_US);
9: p2->send(outFrm);

10: }
11: };

Demo Example 1

• Conceptual DVD Player, TLM-1.0 style
– Parallel video and audio decoding

with different frame rates

1. Real time schedule: fully parallel

2. Reference simulator schedule (DES)

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 77

0 26.12

33.33

52.25

66.67

78.38

100

Frame 1 Frame 2 Frame 3

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

LF 4
RF 4

Time [ms]

Video

Left
Right

Video

Left
Right

0

33.33 66.67

78.38

100

Frame 3Frame 1 Frame 2

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

Time [ms] …52.2526.12

LF 4

DUT

Video
Codec

Left
Audio
Codec

Right
Audio
Codec

DUT
Video

Monitor
Left

Speaker
Right

Speaker

Stimulus

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 39

Demo Example 1

• Conceptual DVD Player, TLM-1.0 style
– Parallel video and audio decoding

with different frame rates

1. Real time schedule: fully parallel

3. Synchronous parallel schedule (PDES)

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 78

0 26.12

33.33

52.25

66.67

78.38

100

Frame 1 Frame 2 Frame 3

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

LF 4
RF 4

Time [ms]

Video

Left
Right

0 26.12

33.33 66.67

78.38

100

Frame 1 Frame 2 Frame 3

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

LF 4
RF 4

Time [ms]

Video

Left
Right

52.25

DUT

Video
Codec

Left
Audio
Codec

Right
Audio
Codec

DUT
Video

Monitor
Left

Speaker
Right

Speaker

Stimulus

Demo Example 1

• Conceptual DVD Player, TLM-1.0 style
– Parallel video and audio decoding

with different frame rates

1. Real time schedule: fully parallel

4. Out-of-order parallel schedule (OoO PDES)

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 79

0 26.12

33.33

52.25

66.67

78.38

100

Frame 1 Frame 2 Frame 3

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

LF 4
RF 4

Time [ms]

Video

Left
Right

0 26.12

33.33

52.25

66.67

78.38

100

Frame 1 Frame 2 Frame 3

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

LF 4
RF 4

Time [ms]

Video

Left
Right

DUT

Video
Codec

Left
Audio
Codec

Right
Audio
Codec

DUT
Video

Monitor
Left

Speaker
Right

Speaker

Stimulus

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 40

Demo Example 1

• Conceptual DVD Player, TLM-1.0 style
– Parallel video and audio decoding

with different frame rates

• Simulator Run Times
– 4-core Intel® Xeon® CPU at 3.4 GHz

– RISC v0.2.1, Posix-threads

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 80

DUT

Video
Codec

Left
Audio
Codec

Right
Audio
Codec

DUT
Video

Monitor
Left

Speaker
Right

Speaker

Stimulus

DES PDES
OoO

PDES

10 sec
stream

Run Time 6.98 s 4.67 s 2.94 s

CPU Load 97% 145% 238%

Speedup 1 x 1.49 x 2.37 x

100 sec
stream

Run Time 68.21 s 45.91 s 28.13 s

CPU Load 100% 149% 251%

Speedup 1 x 1.49 x 2.42 x

Demo Example 2

• Conceptual DVD Player, TLM-2.0 style
– Example: hierarchical socket binding, event handshakes

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 81

Video
Codec

Left Audio
Codec

Right Audio
Codec

Bus

Video
Monitor

Left
Speaker

Right
Speaker

Stimulus

Memory

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 41

Demo Example 2

• Various Modeling Styles Supported by RISC v0.6.2

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 82

Structural Composition Synchronization Connectivity

Explicit Memories Interconnect Modules DMI

Demo Example 2

• Experimental Results for TLM-2.0 DVD Player Models
– All models are functional and simulate correctly (RISC v0.6.0)

– Results: run time (seconds) and speedup (%)

– All models exhibit high simulation speedup
 2.8 times faster than the sequential reference model

 This beats our prior results: TLM-1.0 reached only 2.5 x

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 83

Interface Direct Hierarchical Interconnect

Seq OoO Par Seq OoO Par Seq OoO Par

BTI 208.1 73.8 282% 208.1 75.7 274% 208.4 74.8 278%

DMI 208.2 73.7 282% 208.5 75.5 276% 208.4 74.7 279%

NBTI 209.3 74.9 279% 209.4 75.6 277% 209.5 75.7 277%

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 42

Demo Example 3

• Mandelbrot Renderer (Graphics Pipeline Application)
– Mandelbrot Set

• Mathematical set of points
in complex plane

– Two-dimensional fractal shape

• High computation load
– Recursive/iterative function

• Embarrassingly parallel
– Parallelism at pixel level

– SystemC Model
• TLM abstraction

• Horizontal image slices

• Highly configurable

• Parallelism parameter
from 1 to 256 slices

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 84

Top

Stimulus Monitor

Platform

DUT

din dout

Coordinator

M M M M

Demo Example 3

• Experimental Results
– Simulator run times on 16-core Intel® Xeon® multi-core host

– 2 CPUs at 2.7 GHz, 8 cores each, 2-way hyper-threaded

– RISC V0.2.1, Posix-threads

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 85

Parallel
Slices

DES PDES OOO PDES

Run
Time

CPU
Load

Run
Time

CPU
Load

Speedup
Run
Time

CPU
Load

Speedup

1 162.13 s 99% 162.06 s 100% 1.00 x 161.90 s 100% 1.00 x
2 162.19 s 99% 96.50 s 168% 1.68 x 96.48 s 168% 1.68 x
4 162.56 s 99% 54.00 s 305% 3.01 x 53.85 s 304% 3.02 x
8 163.10 s 99% 29.89 s 592% 5.46 x 30.05 s 589% 5.43 x

16 164.01 s 99% 19.03 s 1050% 8.62 x 20.08 s 997% 8.17 x
32 165.89 s 99% 11.78 s 2082% 14.08 x 11.99 s 2023% 13.84 x
64 170.32 s 99% 9.79 s 2607% 17.40 x 9.85 s 2608% 17.29 x

128 174.55 s 99% 9.34 s 2793% 18.69 x 9.39 s 2787% 18.59 x
256 185.47 s 100% 8.91 s 2958% 20.82 x 8.90 s 2964% 20.84 x

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 43

Interactive Hands-on Demo

• Docker Setup
 sudo docker pull ucirvinelecs/risc062

 sudo docker run -it ucirvinelecs/risc062:latest

 cd demodir

• Demo 1: DVD Player, TLM-1.0
 make play_demo

• Demo 2: DVD Player, TLM-2.0
 make play_TLM2_bus_mem_demo

• Demo 3: Mandelbrot Renderer
 make mandelbrot_demo

• Handout and detailed “Cheat Sheet” available online
 http://www.cecs.uci.edu/~doemer/ESWeekTutorial.pdf

 http://www.cecs.uci.edu/~doemer/ESWeekTutorial.txt

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 86

Out-of-Order Parallel Simulation
of SystemC Models

using the RISC Framework

Part 5: Hands-on Practical Analysis
of Parallel Potential of SystemC Models

Rainer Dömer
doemer@uci.edu

Center for Embedded and Cyber-Physical Systems
University of California, Irvine

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 44

RISC Framework Overview

• RISC Framework consists of 3 Branches

1. Simulation
– With VP support

2. Analysis
– Static

– Dynamic

3. Recoding
– Transformation

– Optimization

 This session
demonstrates
SystemC
analysis features

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 88

VP
Engine

Virtual
Platforms

VP-based
Prototyping

MHP
Analysis

ToolsRISC

MHP
Analysis

ToolsRISC

Model
Analysis

ReportsReportsReports

Parallelism
Analysis

ToolsRISC

Recoding
Tools

RISC

Recoding
Tools

RISC

Refined
Model

Model
Transformation

and
Optimization

Recoding
Tools

RISC

SystemC
Model

SystemC
Compiler

RISC

C++ Compiler

OoO PDES
Executable

Parallel
Model

Parallel
Simulation

Many-Core
Platform

Parallel
SystemC
Library

SystemC
Headers

Analysis of Model Structure

• SystemC Model Hierarchy

• SystemC Model Connectivity
– Ports

– Sockets

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 89

RISC

Segment Graph

C/C++ Foundation

ROSE IR

SystemC IR

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 45

Visualization of Model Structure

• SystemC Model Visualization: visual
– Hierarchy and connectivity

• Ports and sockets

– Threads in modules

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 90

Step 2:
Perform Conflict Analysis

Analysis of Potential Parallelism

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 91

• Segment Graph based Conflict Analysis
1. Build the Segment Graph

2. Perform parallel access conflict analysis

3. Instrument the model for parallel execution

Seg 2

Seg 1

Seg 3

Seg 4 Seg 5

Seg 6

Segment Graph

Seg 3
R: a, b
W: x, y
RW:

Seg 2
R: a, b
W: x
RW: z

systemc.h

Model.cpp

RISC Compiler

Segment
Graph

Construction

Parallel
Access
Conflict
Analysis

Code
Instrumen-

tation

risc_
Model
.cpp

Compilation
and

Linking

Parallel
Executable

Conflict Seg 1 Seg 2 Seg 3

Seg 1 True

Seg 2 True True

Seg 3 True

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 46

Visualization of Segment Graph

92

• Segment Graph and Conflicts Visualization:
sysdot

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS

Visualization of Conflict Tables

93

• Web browser
and sysdot

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 47

Interactive Hands-on Demo

• Docker Setup
 xhost +

 sudo docker run -it --net=host --env="DISPLAY" \

 -volume="$HOME/.Xauthority:/root/.Xauthority:rw" \

 ucirvinelecs/risc062:latest

 cd demodir

• Demo 5: Examples using visual
 visual play.cpp (and other examples)

• Demo 6: Examples using sysdot
 make play_ooo

 sysdot play_segment_graph.dot (and other examples)

• Handout and detailed “Cheat Sheet” available online
 http://www.cecs.uci.edu/~doemer/ESWeekTutorial.pdf

 http://www.cecs.uci.edu/~doemer/ESWeekTutorial.txt

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 94

References (1)

• [Springer’20b] R. Dömer, Z. Cheng, D. Mendoza, E. Arasteh: "Pushing the Limits of Parallel
Discrete Event Simulation for SystemC", in "A Journey of Embedded and Cyber-Physical
Systems" by Jian-Jia Chen, Springer Nature, Switzerland, August 2020.

• [IJPP’20] Z. Cheng, T. Schmidt, R. Dömer: "Scaled Static Analysis and IP Reuse for Out-of-
Order Parallel SystemC Simulation", International Journal of Parallel Programming (IJPP),
Springer, June 2020.

• [DATE’20] D. Mendoza, Z. Cheng, E. Arasteh, R. Dömer: "Lazy Event Prediction using
Defining Trees and Schedule Bypass for Out-of-Order PDES", Proceedings of DATE,
Grenoble, France, March 2020.

• [ASPDAC’20] Z. Cheng, A. Arasteh, R. Dömer: “Event Delivery using Prediction for Faster
Parallel SystemC Simulation", Proceedings of ASPDAC, Beijing, China, Jan. 2020.

• [Springer’20a] Z. Cheng, T. Schmidt, R. Dömer: "SystemC Coding Guideline for Faster Out-of-
Order Parallel Discrete Event Simulation", chapter 6 in "Languages, Design Methods, and
Tools for Electronic System Design" by T. Kazmierski, S. Steinhorst and D. Grosse, reprint of
best papers at FDL 2018, Springer Nature, Switzerland, January 2020.

• [DVCon’19] D. Mendoza, A. Dingankar, Z. Cheng, R. Dömer: "Integrating Parallel SystemC
Simulation into Simics® Virtual Platform", Proceedings of DVCon Europe, Munich, Germany,
Oct. 2019.

• [TECS’19] Z. Cheng, R. Dömer: "Analyzing Variable Entanglement for Parallel Simulation of
SystemC TLM-2.0 Models", ACM Transactions on Embedded Computing Systems (TECS),
vol. 18, no. 5s, article 79, 20 pages, October 2019.

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 95

OoO PDES of SystemC Models using RISC,
Tutorial

Embedded Systems Week 2020

(c) 2020 R. Doemer et al., CECS 48

References (2)

• [CECS’19] G. Liu, T. Schmidt, Z. Cheng, D. Mendoza, R. Dömer: "RISC Compiler and
Simulator, Release V0.6.0: Out-of-Order Parallel Simulatable SystemC Subset", CECS TR
19-04, Sep. 2019.

• [IESS’19b] E. Arasteh, R. Dömer: “An Untimed SystemC Model of GoogLeNet", Proceedings
of IESS, Springer, Friedrichshafen, Germany, Sep. 2019.

• [IESS’19a] Z. Cheng, T. Schmidt, R. Dömer: "Enabling IP Reuse and Protection in Out-of-
Order Parallel SystemC Simulation", Proceedings of IESS, Springer, Friedrichshafen,
Germany, Sep. 2019.

• [FDL’18] Z. Cheng, T. Schmidt, R. Dömer: "SystemC Coding Guideline for Faster Out-of-
Order Parallel Discrete Event Simulation", Proceedings of FDL, Munich, Germany, Sep. 2018.

• [DATE’18] T. Schmidt, Z. Cheng, R. Dömer: "Port Call Path Sensitive Conflict Analysis for
Instance-Aware Parallel SystemC Simulation", Proceedings of DATE, Dresden, Germany,
March 2018.

• [CECS’17] D. Mendoza, R. Dömer: "A Tool for Visualization of SystemC Models", CECS
Technical Report 17-06, Nov. 2017.

• [HLDVT’17] Z. Cheng, T. Schmidt, G. Liu, R. Dömer: "Thread- and Data-Level Parallel
Simulation in SystemC, a Bitcoin Miner Case Study", Proceedings of HLDVT, Santa Cruz,
California, Oct. 2017.

• [DAC’17] T. Schmidt, G. Liu, R. Dömer: "Towards Ultimate Parallel SystemC Simulation
through Thread and Data Level Parallelism", Proceedings DAC, Austin, TX, June 2017.

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 96

References (3)

• [Springer’17] R. Dömer, G. Liu, T. Schmidt: "Parallel Simulation", chapter 17 in "Handbook of
Hardware/Software Codesign" by S. Ha and J. Teich, Springer Netherlands, June 2016.

• [ASPDAC’17] T. Schmidt, G. Liu, R. Dömer: "Hybrid Analysis of SystemC Models for Fast and
Accurate Parallel Simulation", Proceedings ASPDAC, Tokyo, Japan, January 2017.

• [IEEE ESL’16] R. Dömer: "Seven Obstacles in the Way of Standard-Compliant Parallel
SystemC Simulation", IEEE Embedded Systems Letters, vol. 8, no. 4, pp. 81-84, Dec. 2016.

• [DAC’15] R. Dömer: “Towards Parallel Simulation of Multi-Domain System Models", Keynote,
DAC workshop on System-to-Silicon Performance Modeling and Analysis, June 2015.

• [IEEE TCAD’14] W. Chen, X. Han, C. Chang, G. Liu, R. Dömer: "Out-of-Order Parallel
Discrete Event Simulation for Transaction Level Models",
IEEE Transactions on CAD, vol. 33, no. 12, pp. 1859-1872, December 2014.

• [DATE’14] W. Chen, X. Han, R. Dömer: "May-Happen-in-Parallel Analysis based on Segment
Graphs for Safe ESL Models", Proceedings of DATE, Dresden, Germany, March 2014.

• [DATE’13] W. Chen, R. Dömer: "Optimized Out-of-Order Parallel Discrete Event Simulation
Using Predictions", Proceedings of DATE, Grenoble, France, March 2013.

• [DATE’12] W. Chen, X. Han, R. Dömer: "Out-of-Order Parallel Simulation for ESL Design",
Proceedings of DATE, Dresden, Germany, March 2012.

Tutorial at ESWEEK, Sept. 20, 2020 (c) 2020 R. Doemer et al., CECS 97

