
1

Embedded Systems Conference San Francisco 2002

The SpecC System-Level Design Language
and Methodology, Part 2

Class 349

Rainer Dömer*, Andreas Gerstlauer*
Paul Kritzinger**, Mike Olivarez**

*Center for Embedded Computer Systems
Universitiy of California, Irvine, USA

**Motorola Semiconductor Products Sector
Advanced Systems Architectures, Austin, TX, USA

Abstract
A well-defined design methodology supported by a system-level design language (SLDL) is the key for
managing the complexity of the design flow, especially at the system level. Only with well-defined and
unambiguous models and transformations can we achieve productivity gains through synthesis, verification
and tool interoperability. This paper presents the SpecC system design methodology. It shows how, through
gradual, stepwise refinement, a design is taken from specification down to implementation. Finally, it
introduces a design example of industrial-strength that has been implemented following the methodology,
including the results and productivity gains achieved.

This is the second paper in a two-part series. This part covers the SpecC methodology and its application to
an industrial design example, a GSM vocoder.

1 Introduction
In general, system design is the process of implementing a given specification on a chip in silicon. It is a
two-step process that gradually moves the design to lower levels of abstraction. First, a system architecture
is derived from the specification. Then, the system components are implemented down to their register-
transfer level (RTL) or instruction-set (IS) architecture.

Specification
+ constraints

Memory

Memory

µProcessor

Interface

Comp.
IP

Bus

Interface

Interface

Interface

Custom HW

System architecture
+ estimates

Processors
IPs

Memories
Busses

RTL/IS Implementation
+ results

Registers
ALUs/FUs
Memories

Gates

Mem RF
State

Control

ALU

Datapath

PC

Control Pipeline

State

IF FSM

State

IF FSM
IP Netlist

RAM

IR

Memory

Figure 1: System-On-Chip Design.

At each level of abstraction, a behavioral description is converted into a structural description that
implements the original behavior and satisfies given constraints. This process is also called synthesis.

2

During system synthesis, a system architecture is defined by allocating a set of components like processors,
memories, custom hardware or IP components that communicate via a set of system busses. The
functionality of the specification is then mapped onto this architecture.

During component synthesis, the components of the system architecture are implemented by designing
their microarchitecture. For each component, a datapath consisting of functional units, register files,
memories, and busses is defined. Finally, the desired behavior of custom hardware or software components
is implemented on top of the their RTL or instruction-set microarchitecture, respectively.

1.1 Abstraction Levels
As the system design progresses through the different stages, the system specification is gradually refined
from an abstract idea down to an actual implementation. This refinement is achieved in a stepwise manner
through several layers of abstraction.

System design starts with a set of requirements and constraints, both in terms of functionality and quality.
Initially, functional requirements are possibly captured in different models of computation (MOC) for
different application domains. For example, data-flow models are frequently used to describe data-
dominated parts of the system.

The actual design process, however, starts with a single, common system specification derived from the
requirements and the different MOCs. The specification describes the system functionality in a unified way
as a starting point for system synthesis. It is free of any implementation detail.

At the architecture level, the component structure of the system architecture is defined. The system
functionality is partitioned and partitions are assigned to different components. In the process, the
computational parts of the system are ordered based on execution times and a scheduling of computation on
each component.

At the communication level, components are refined into bus-functional representations, which accurately
describe the timing of events on the wires of the busses.

Finally, at the implementation level, the components are defined in terms of their register-transfer or
instruction-set architecture. The granularity of time in the system is refined down to individual clock cycles
in each component.

Eventually, the design will be further refined down to a gate-level structure with timing of system events in
terms of sub-cycle delays. From there on, the design is then taken into placement and routing, physical
layout, and finally manufacturing.

1.2 Design Flow
The SpecC design flow is based on four abstraction levels, namely specification, architecture,
communication, and implementation level. The design starts with a specification model captured by the
user based on algorithms of his/her choice.

The system synthesis process is then subdivided into two tasks: architecture exploration maps the
computation in the specification onto system components that are instantiated out of a component library.
During architecture exploration, the specification model is refined into the intermediate architecture model.

Then, communication synthesis refines the abstract communication in the architecture model into an
implementation over actual wires of system busses. The system components are refined into bus functional
models that communicate over bus wires using protocols selected from a protocol library.

The result of the system synthesis process is the communication model, which is then handed off to the
backend tools for RTL or instruction-set level implementation. Hardware components are synthesized into
a microarchitecture of RTL-components, software is compiled into the processor’s instruction set, and
interface logic and bus drivers are generated on the hardware and software side, respectively.

The final result of the system design process is the implementation model.

3

System design Validation flow

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication synthesis

Communication model

Comp.
IP

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Implementation model

Software
compilation

Interface
synthesis

Hardware
synthesis

Backend Estimation

Validation
Analysis

Compilation Simulation model

RTOS
IP

RTL
IP

Architecture exploration

Capture

Figure 2: SpecC Methodology.

1.3 SpecC Methodology
The complete SpecC system-level design methodology is shown in Figure 2. In the SpecC methodology, all
models are written in the SpecC language. The design is represented by a corresponding description in
SpecC at each stage. All models are executable for validation through simulation (right), reusing the same
test bench throughout the whole design process. In addition to simulation, the formal nature of the models
enables the application of formal methods for verification, analysis or estimation, for example.

The well-defined nature of the whole design process is the basis for rapid design space exploration through
automatic model refinement and other design automation.

Next, we will explain the different models and refinements of the SpecC methodology in detail. Based on a
simple design example, we will walk through the methodology step by step.

2 Specification Model
The system design process starts with the specification model written by the user to specify the desired
system functionality. It forms the input to architecture exploration, the first step of the system design
process. Therefore, it defines the basis for all exploration and synthesis. For example, the specification
model defines the granularity for exploration through the size of the leaf behaviors, it exposes the available
parallelism, it separates communication from computation, and it uses hierarchy to group related
functionality and to manage complexity.

The specification model is a purely functional, abstract model that is free of any implementation details.
The hierarchy of behaviors in the specification model solely reflects the system functionality without
implying anything about the system architecture to be implemented.

The specification model is also free of any notion of time. The model executes in zero simulation time.
Events in the specification model are used for synchronization, which establishes a partial ordering among
the behaviors based on desired causality.

In general, at each level of hierarchy the specification is an arbitrary serial-parallel composition of
behaviors. Behaviors communicate through variables and synchronize through events attached to their
ports. At the lowest level of hierarchy, leaf behaviors execute the algorithms in the form of C code.

4

B1

v1

v2

e2

B1

B2 B3

Figure 3: Specification Model Example.

Figure 3 shows an example of a simple yet quite typical specification model. Execution starts with leaf
behavior B1, followed by the parallel composition of leaf behaviors B2 and B3. B1 produces variable v1,
which then is consumed by both B2 and B3. In addition, the concurrent behaviors B2 and B3 exchange data
and synchronize through variable v2 and event e2. B2 writes to v2 and notifies B3 about the availability of
data via event e2. After receiving event e2, B3 in turn then reads the data from variable v2.

3 Architecture Exploration
Architecture exploration is the first part of the system synthesis process. It derives a system architecture
from the specification model. The purpose of architecture exploration is to map the computational parts of
the specification represented by the behaviors onto the components of a system architecture.

The main steps involved in this process are behavior partitioning, variable partitioning, and scheduling.

3.1 Behavior Partitioning
The first step in architecture exploration is the allocation of a set of processing elements (PEs) and the
mapping of the specification behaviors onto the allocated PEs. This process determines the groups of
behaviors that will define the functionality to be implemented by each PE.

For our example, we assume an allocation of two processing elements, PE1 and PE2, and a mapping of leaf
behaviors B1 and B2 onto PE1 whereas leaf behavior B3 will execute on PE2.

In the SpecC description, PE allocation and behavior mapping is modeled by inserting an additional level
of hierarchy at the top of the behavior hierarchy. Here, a set of concurrent behaviors representing the PEs
of the system architecture is introduced.

The leaf behaviors are grouped under those newly added PE behaviors according to the selected mapping,
replicating the original behavior hierarchy in each PE as necessary. In order to preserve the execution
semantics of the original specification, synchronization is added between PEs for each pair of sequential
behaviors mapped to concurrent PEs.

Finally, communication between behaviors on different PEs becomes system-global communication and is
moved to the top-level that contains the PE behaviors.

The refined model of our example after PE allocation and behavior partitioning is shown in Figure 4. At the
top level, the design is transformed into a parallel composition of two newly inserted behaviors, PE1 and
PE2, which represent the components of the system architecture. Inside PE1, leaf behaviors B1 and B2 are
instantiated, replicating the original behavior hierarchy of the specification model. Leaf behavior B3, on the
other hand, is executing inside component behavior PE2. Behavior B3 is the only leaf behavior grouped
under PE2. Other empty parts of the behavior hierarchy have been collapsed and removed in this PE.

The variable v1 and the message-passing channel C2 for communication between behaviors B1 and B2 on
the one hand and B3 on the other hand have become global variables and channels, respectively. They are
instantiated at the top level, connecting the behaviors inside the two PEs. These global variables and
channels represent all the communication occurring between PEs.

5

In order to preserve the semantics of the original specification, pairs of behaviors communicating via
message-passing channels must be inserted to synchronize sequential behaviors executing on concurrent
PEs.

B3

B13rcv

B34snd

B2

B1B1

B13snd

B34rcv

PE1

c2

v1

cb13

cb34

PE2

Figure 4: Model after Behavior Partitioning.

As shown for our example, two synchronization behavior pairs and two channels are inserted. Behaviors
B13Snd on PE1 and B13Rcv on PE2 synchronize execution of behaviors B1 and B3 between PE1 and PE2
via channel cb13. In accordance with the original specification model, behavior B3 is not allowed to start
executing until behavior B1 has finished. Similarly, the synchronization behavior pair B34Snd and B34Rcv
ensures that PE1 does not complete and start a new iteration until behavior B3 has finished.

3.2 Variable Partitioning
At this point, the set of global variables instantiated between the PE behaviors represents global storage that
has to be mapped to actual memories in the system architecture. In a straightforward implementation,
global variables are mapped to a dedicated shared memory that is allocated together with the processing
elements and included in the system architecture.

Alternatively, in a message-passing architecture shared variables are mapped to the local memories of the
processing elements. A local copy of the variable is created in each component that is accessing the
variable. As shown in Figure 5, a local copy of variable v1 is created in both PE1 and PE2. The behaviors
inside the PEs are then operating on the data in the local memory instead of accessing a global variable.

However, in order to preserve the shared semantics of the variable and to keep the local copies inside the
PEs in sync, updated data values have to be exchanged between the components at synchronization points.
Therefore, updated data values are communicated over the existing channels together with behavior
synchronization. In our example, the new value of v1 produced by B1 on PE1 is passed over the channel
cb13 together with transferring control from B13Snd to B13Rcv.

3.3 Scheduling
The next step in the architecture exploration process is the scheduling of behavior executions on the
processing elements. Processing elements have a single thread of control only. Therefore, behaviors
mapped to the same PE can only execute sequentially and have to be serialized.

For example, a static scheduling of PE1 in our design example will serialize the parallel composition of
behavior B2 and the B3Stub behaviors. Assuming B13Snd is scheduled before B2 and B34Rcv after B2, the
hierarchy is flattened and the behaviors are executed in that order in the refined SpecC model.

6

B3

B13rcv

B34snd

B2

B1B1

B13snd

B34rcv

PE1

c2

v1

cb13

cb34

PE2

v1

Figure 5: Architecture Model.

The final model of the design after scheduling is shown in Figure 5. At the top level, the model remains
unchanged. The design is a parallel composition of component behaviors PE1 and PE2 communicating via
message-passing channels cb13, c2, and cb34. However, the PE2 behavior has been replaced with a refined
model of the component that reflects the static scheduling of the behaviors inside PE1.

4 Architecture Model
Scheduling is the final step of architecture exploration and the resulting model is therefore the so-called
architecture model. It is an intermediate model of the system design process.

The architecture model reflects the component structure of the system architecture. At the top-level of the
behavior hierarchy, the design is a set of concurrent, non-terminating component behaviors. However,
communication is still on an abstract level and components communicate via message-passing channels.
The communication synthesis task that follows will implement the abstract communication over busses
with real protocols.

The behaviors grouped under the components specify the desired functionality for the implementation of
the component during later stages.

Concurrency is limited to the top-level of the design in the architecture model. All the concurrency in the
design at this point is captured by the set of components running in parallel. Inside each component,
behaviors execute sequentially in a certain order.

The architecture model is timed in terms of the computational parts of the design. Behaviors are annotated
with estimated execution delays for simulation feedback, verification and further synthesis.

5 Communication Synthesis
Communication synthesis refines the abstract communication between components in the architecture
model into an actual implementation over wires and protocols of system busses.

The steps involved in this process are channel partitioning, protocol insertion, protocol inlining.

5.1 Channel Partitioning
The first step in the process of implementing communication over system busses is the allocation of a set of
busses and the mapping of communication channels onto those busses. This process determines the groups
of channels to be implemented by each bus.

In our design example, we have only two components communicating with each other. Therefore, only one
system bus, Bus1, is allocated connecting PE1 and PE2. All communication channels are mapped onto that
bus.

7

In the SpecC description, bus allocation and channel mapping is modeled by inserting an additional level at
the top of the channel hierarchy. The new top-level channels represent the allocated system busses. The
channels instantiated between the components are grouped under the bus channels according to the selected
mapping.

B3

B34snd

B2

B1B1

B13snd

B34rcv

PE1

v1

PE2

v1

B13rcv

c2

cb13

cb34

Bus1

Figure 6: Model after Channel Partitioning.

Figure 6 shows the refined model of our example after bus allocation and channel partitioning. At the top
level, a new channel, Bus1, has been inserted between the two PEs. The abstract channels cb13, c2, and
cb34 for communication between PE1 and PE2 are grouped as subchannels under the bus channel.

The two component behaviors PE1 and PE2 are connected to the bus through corresponding bus ports and
bus interfaces. All inter-component connections are multiplexed over the single bus.

5.2 Protocol Insertion
The next step in communication synthesis is the insertion of actual bus protocols into the model. In the
process, the abstract bus channels are replaced with an actual implementation of their semantics over the
real bus protocol.

A description of the protocol is taken out of the protocol library in the form of a protocol channel. The
protocol channel encapsulates the bus wires and implements the bus protocol by driving and sampling bus
wires according to the protocol timing constraints. At its interface, the protocol channel provides methods
for all primitive transactions supported by the protocol like read, write, burst read, burst write, and so on.

B2

B1B1

B13snd

B34rcv

PE1

v1

B3

B34snd

PE2

v1

B13rcv

DblHSBus

IB
u

sS
la

ve

IB
u

sM
as

te
r

ready
ack

address[15:0]
data[31:0]

DblHSProtocol

Master Slave

IP
ro

to
co

lS
la

ve

IP
ro

to
co

lM
as

te
r

Figure 7: Model after Protocol Insertion.

On top of the protocol layer, an application layer is created that implements the abstract message-passing
semantics over the bus protocol. The application layer wraps around the protocol layer and instantiates the
protocol channel internally. The functionality of the application layer includes synchronization, arbitration,
bus addressing, and data slicing.

8

Finally, the abstract bus channels in the model are replaced with their equivalent hierarchical combinations
of protocol and application layers that implement the communication of each bus.

Figure 7 shows the refined model of our design example after inserting a double-handshake protocol for the
bus between PE1 and PE2. The bus channel has been replaced with the hierarchical combination of
application layer channel DblHSBus and protocol layer channel DblHSProtocol. The PE behaviors are
connected to the new bus channel via their bus ports. In this case, it was decided to make PE1 the bus
master and PE2 the bus slave.

5.3 Protocol Inlining
After protocols have been inserted for the busses in the system, the communication is finally inlined into
the components. The communication functionality is moved into the components where it will later be
implemented together with the behaviors mapped onto the components.

During inlining, the application layer and protocol layer channels are split and the code is moved into the
components according to their connectivity. After inlining, the bus wires internal to the protocol layer are
exposed and the components are connected to the bus wires via corresponding ports. Inside the
components, adapter channels containing application layer and protocol layer methods required by the
component are instantiated. On the one side, the hierarchical adapters are connected to the component ports
and their methods drive and sample the bus wires via the adapter ports. On the other side, the behaviors
inside the PEs are connected to the interfaces of the adapter channels, calling the bus interface methods
provided by the adapters.

As shown in Figure 8, the DblHSBus channel in our example is split into two halves, PE1Bus and PE2Bus,
which are moved into the component behaviors PE1 and PE2, respectively. The variables representing the
bus wires for address bus, data bus and the two control lines, ready and ack, are exposed and the PEs are
connected to the wires via corresponding ports.

ready

ack

address[15:0]

data[31:0]

B3

B34snd

v1

B13rcv

B2

B1B1

B13snd

B34rcv

PE1

v1

PE2

Figure 8: Model after Protocol Inlining.

6 Communication Model
The model after protocol inlining is called the communication model. It is the final result of the system
synthesis process and as such defines the structure of the system architecture in terms of both components
and connections. Computation has been mapped onto components and communication onto busses.

At the top-level of the hierarchy, the communication model is a parallel composition of a set of non-
terminating components communicating via a set of system busses. Inside the components, a sequence of
behaviors describes their functionality. The behaviors also define the timing of bus transactions as
determined by the communication calls executed by the code.

At their interfaces, the components therefore provide a timing-accurate model of the component
functionality down to the level of events on the bus wires. As a result, the communication model is timed in
terms of both computation and communication.

9

7 Backend
In the backend, the behavioral views of the components in the communication model are converted into
structural descriptions of each component’s microarchitecture. The functionality of each component is
implemented as custom hardware described by its RTL model, as processor software compiled into an
instruction-set stream, or as an IP with fixed functionality. In the process, timing is refined down to the
level of individual clock cycles based on each component’s clock period. Therefore, the implementation
model is cycle-accurate.

The backend process encompasses three parallel synthesis tasks for hardware, software, and interfaces.

7.1 Hardware Synthesis
On the hardware side, high-level synthesis (HLS) is performed. High-level synthesis of custom hardware
requires scheduling of the code into clock cycles. The C code inside the leaf behaviors of the component is
scheduled by drawing clock boundaries between the statements. The list of statements between clock
boundaries defines the data-path operations performed in each clock cycle and the set of clock boundaries
defines the states of the hardware control unit.

For example, under the assumption that the PE2 component in our design example will be implemented as
custom hardware, its leaf behavior B3 needs to be scheduled. Given PE2’s clock, clock boundaries are
introduced into the list of B3’s C code statements.

7.2 Software Synthesis
On the software side, the computation represented by the behaviors executing on the programmable
processor component is implemented by compiling the code into the instruction set of the processor. For
our design example, we assume that the PE1 component will be implemented as a general-purpose
microprocessor.

Software synthesis is a two-step process: code is generated from the SpecC model of the component and
the generated code is compiled into the instruction-set of the target processor.

7.3 Interface Synthesis
Also, the communication functionality represented by the application and protocol layers of the bus adapter
channels needs to be implemented on the target components as part of the backend process.

On the hardware side, bus interface logic is synthesized as part of the custom hardware. For example the
bus adapter PE1Bus is refined into an FSMD model that drives and samples the bus wires in terms of the
component clock.

Software processor Custom hardware

ready

ack

address[15:0]

data[31:0]

PE2

PE2_CLKPE1_CLK

OBJ

PORTA

PORTB

INTA

PORTC

PE1

Instruction
Set
Simulator
(ISS)

S0

S1

S2

S3

S4

Figure 9: Implementation Model.

On the software side, bus drivers are generated which implement the application and protocol layer
functionality over the processor’s I/O instructions. For example, the bus adapter PE2Bus on the processor
PE2 is compiled into a bus driver library, which will be linked against the rest of the processor’s program.

10

Figure 9 shows the implementation model after the refinement in the backend process. The PE behaviors
are replaced with refined models of hardware, software and interfaces.

8 Implementation Model
The implementation model is the result of the backend process and as such the final end-result of the whole
system design flow. It is a structural description of the system down to the component microarchitectures.

At the top-level, the system architecture is a set of non-terminating, concurrent components communicating
via system busses. At the component level, computation and communication functionality is described on
top of the component’s microarchitecture: FSMD models for custom hardware and instruction-set models
for software on programmable processors.

The implementation model is a cycle-accurate system description. The order and timing of computation and
computation in the system is described in terms of component clocks. A global order is imposed among the
system’s components via the order of events on the common bus wires.

9 Design of a GSM Vocoder
In order to demonstrate the benefits of the SpecC methodology, we will now walk through the design
process of a GSM vocoder application.

The vocoder project was done at the University of California, Irvine, in close connection with Motorola [1].
The purpose of the project was to apply the SpecC methodology to an industrial size example and to
demonstrate and evaluate the methodology’s effectiveness and benefits.

The voice encoding/decoding part of the GSM standard for mobile telephony was chosen as the basis for
the project as a medium-size application which is beyond pure toy examples but yet small enough to be
feasible in the relatively short project time.

9.1 GSM Vocoder Standard
The so-called Enhanced Full-Rate (EFR) Speech Transcoding is a standard that is part of the world-wide
GSM system for cellular phone networks. The lossy compression scheme is an instance of a class of widely
used speech encoding/decoding algorithms based on a so-called code-excited linear predictive (CELP)
coding model. In this particular case, the GSM Vocoder encodes incoming speech samples at a rate of
104 kbit/s into an encoded bit stream with a rate of 12.2 kbit/s.

The CELP voice encoding scheme is based on a speech synthesis model which tries to emulate the way in
which speech is generated in the human vocal tract. The combination of the output of a long term pitch
filter and a set of residual pulses out of a fixed codebook models the buzz produced by the human vocal
chords. This excitation is then fed into a short-term, linear prediction (LP) synthesis filter that models the
modulation occurring in the human throat and mouth as a system of lossless tubes.

Short-term
synthesis filter

+Delay/ Adaptive codebook

10th-order LP filter

Speech

Fixed codebook

Long-term
pitch filter

Residual
pulses

Figure 10: GSM Vocoder Speech Synthesis Model.

Instead of transmitting compressed speech samples, the filter parameters of the speech synthesis model are
extracted in the encoder, transmitted, and used for driving the synthesis of speech in the decoder. In the
encoder, parameters are extracted such that the mean-square error between synthesized and original speech
is minimized. Parameter extraction operates on frames of 160 samples corresponding to 20 ms of speech.
Each frame is further subdivided into 4 subframes and one set of parameters is transmitted per subframe.

11

The Vocoder standard specifies a maximal total latency of 10 ms for the first subframe when operating
encoder and decoder in back-to-back mode. In addition, a complete frame has to be encoded and decoded
within the 20 ms before the next frame arrives.

9.2 Specification Model
The original vocoder standard published by the European Telecommunication Standards Institute (ETSI)
contains a bit-exact reference implementation of the standard in C. This reference code was taken as the
basis for developing the SpecC specification model. At the lowest level, the C algorithms were directly
reused by encapsulating them in SpecC leaf behaviors. However, the C function hierarchy had to be
converted into a clean and efficient SpecC hierarchy by analyzing dependencies, exposing available
parallelism, grouping related parts hierarchically, and so on. In contrast to the original C code, the SpecC
specification describes the vocoder functionality in a clear and concise manner, which greatly eases
understanding for both the user and any automated tools.

Filter memory

update

Closed-loop

pitch search

Algebraic (fixed)

pitch search

Linear prediction

(LP) analysis

Open loop

codebook search

��

��

��

��

��

��
�� ��

��

��

��

��

decode_12k2

Post_Filter

Bits2prm_12k2

Decode

LP parameters

4 subfram
es

bits

speech[160]

A(z)

synth[40]

synth[40]

prm[57]

prm[13]

decoder

��

��
�
�
�
�
��

��

�
�
�
�

��

�
�
�
�
��

��

��

����

��

�� ��

����

��

��

��

��

��

��

��

��

��

��

��

��

�
�
�
�

m
em

ory

2x per fram
e

A(z)

2 subfram
es

prm2bits_12k2

pre_process

sample

prm[57]

bits

speech[160]

coder

vocoderspeech_in bits_in

speech_outbits_out

Figure 11: Specification Model of the Vocoder.

At the top level, the specification model runs encoding and decoding behaviors in parallel, as shown in
Figure 11. Note that, due to space constraints, only the top levels of the hierarchy are shown here. In total,
the specification model of the vocoder contains 43 leaf behaviors and consists of 13,000 lines of code.

9.3 Profiling
Before the start of the actual design process, an initial profiling of the specification was performed to
extract characteristics and to analyze the code.

The chart in Figure 12 shows the profiled computational complexity of the different parts of the encoder.
For each behavior, the number of operations were counted during simulation. Operation counts are
multiplied with a factor according to their relative weights, summed, and combined with the timing
constraints to derive a WMOPS rating for each behavior. The graph shows the result for the four different

12

parts of the encoder: LP analysis, open-loop pitch search, closed-loop pitch search and codebook search.
For each part, the total WMOPS per frame are shown for the total part and for all the leaf behaviors within.
As the graph shows, the codebook search is by far the most demanding and critical part of the vocoder.
Therefore, design efforts need to focus on this hotspot first and foremost.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Total per frame Single execution

Pre
d_

lt_
6

Le
vin

so
n

Az_
lsp

Q_p
lsf

_5

Aut
oc

or
r

W
eig

ht
_A

i

Syn
_f

ilt

Res
idu

Pitc
h_

ol

Res
idu

Con
vo

lve

Syn
_f

ilt

Pitc
h_

fr_
6

Syn
_f

ilt

co
r_

h_
x

co
r_

h

se
ar

ch
_1

0i4
0

W
ei

g
h

te
d

 M
O

P
S

 (
W

M
O

P
S

)

L
P

_a
n

al
ys

is

O
p

en
_l

o
o

p

C
lo

se
d

_l
o

o
p

C
o

d
eb

o
o

k

Figure 12: Relative Computational Complexity of the Encoder.

9.4 Architecture Exploration
As a first step in architecture exploration, a set of system components must be allocated. For the vocoder, a
target architecture consisting of a digital signal processor (DSP) and a custom hardware co-processor was
selected. The DSP was chosen due to the signal processing nature of the specification. Out of the DSPs
available from Motorola, only the DSP56600 matched the 16-bit fixed-point requirements of the standard.
A custom hardware co-processor assists the DSP. In case the performance of the DSP is not sufficient,
computation can be accelerated by mapping it onto the co-processor.

In case of the vocoder, exploration started with a pure software solution in which both encoding and
decoding tasks were executing concurrently on the DSP. The two concurrent tasks were scheduled
dynamically in order to be able to adjust to changing arrival times between encoder and decoder.

Cycles Delay Constraint

First subframe 1,146,387 19 ms 10 ms
Whole frame 2,801,488 47 ms 20 ms

SW Cycles HW Cycles Delay Constraint

First subframe 877,805 28,000 15 ms 10 ms
Whole frame 1,727,160 112,000 29 ms 20 ms

(a)

(b)

Figure 13: Vocoder Delay, (a) on DSP56600, (b) on DSP56600 + Custom HW.

The results of the performance estimation for the pure software solution are shown in Figure 13(a). Back-
to-back encoding and decoding requires about 1.1 million and 2.8 million cycles on the DSP56600. This
translates into a delay of 19 ms and 47 ms at the maximum clock frequency of 60 MHz specified for the
DSP. As can be seen, these results are well beyond the constraints of 10 and 20 ms, respectively.

Thus, it became apparent that the DSP’s peak processing rate of 60 MIPS would not be enough to satisfy
the timing constraints. Therefore, the architecture was modified by moving the most critical part, the
codebook search, into hardware. An estimation of the codebook search in hardware was performed by
straightforward scheduling of the code into clock cycles. The results show that we can expect a 10x
decrease in the number of clock cycles on top of the factor 1.6 improvement in clock speed.

The total estimated delays for this SW/HW solution are shown in Figure 13(b). The number of cycles for
the software part is approximately cut in half. The hardware accelerated codebook search brings the total
delays down to 15 ms and 29 ms. With the given accuracy, these worst-case results are within range of the

13

10/20 ms constraints. Therefore, this candidate architecture was chosen for further evaluation in the
following implementation stages.

res

Motorola DSP56600

Custom hardware

data
��������

speech_in

Codebook

HW

prm_in
��������

Bits2PrmSpeech_In

cdbk_res

cdbk_data

��
��

����
������

speech_out

��

Speech_Out
��

����
��

��Prm2Bits
������

prm_out

Post_Filter

Decode_12k2

D_lsp

Pre_process

LP_analysis

Open_loop

Closed_loop

Start_codebook

Wait_codebook

Update

res

data

speech

prm_in

prm

speechprm

prm_in

synth_out

speech_in

bits_out

DSP

bits_in

Figure 14: Vocoder Architecture Model.

9.5 Architecture Model
The resulting architecture model is shown in Figure 14. At the center of the architecture is the DSP56600
digital signal processor. The DSP runs encoding and decoding concurrently in a dynamic scheduling
approach. The main loop of the application is formed by the encoding task reading incoming speech
samples, processing them, and producing the encoded bit stream at the output. However, encoding is
interrupted whenever a new packet arrives at the decoding side. Depending on the state of the decoding
process, the corresponding decoding stage is executed and once the decoder has finished processing the
incoming packet, control returns to the encoder.

The encoding task on the DSP is supported by the codebook search custom HW component. The encoder
communicates with the codebook HW via message-passing channels in order to send data into the co-
processor for processing and to receive the corresponding results.

In addition, the DSP is surrounded by four peripheral custom hardware components that handle I/O with
the environment, pre-process incoming speech or bit streams, and perform the necessary framing.

9.6 Communication Synthesis
Next, synthesis of the communication between the DSP and the different hardware blocks was performed.
A single system bus was chosen for all communication between the DSP and the five hardware
components. The Motorola DSP defines its own fixed protocol for all communication over its built-in bus
interface. Since the hardware components can be synthesized to support any protocol, the DSP56600
protocol was selected for the system bus.

Then, the inter-component message-passing communication was implemented over the DSP protocol. Bus
interface FSMDs and bus drivers were synthesized for the application and protocol layers on the hardware
and software side, respectively. Since the DSP is the only master on the bus, no arbitration was necessary.
Synchronization was implemented by an interrupt-driven scheme between hardware and software.

14

9.7 Communication Model
The resulting communication model is shown in Figure 15. The five components are connected by the
address, data, chip select (MCS), read (nRD) and write (nWR) wires of the bus. The DSP56600 processor is
the master on the bus. The codebook HW co-processor and the four peripheral hardware components are
bus slaves, listening for transfers with matching addresses on the bus. In addition, hardware components
can signal the DSP by raising interrupts in the processor, as exemplified by the connection from the
codebook HW to the DSP’s intC interrupt line.

nWR

Data[23:0]

intC

Addr[15:0]

MCS

nRD

Bus InterfaceBus Driver

Bus InterfaceBus Interface Bus Interface Bus Interface

HW
Codebook

Speech_In Bits2Prm Prm2Bits Speech_Out

DSP

Figure 15: Vocoder Communication Model.

9.8 Backend
At the output of the system design process, the communication model is then fed into the backend tasks for
implementation of the functionality on each component.

On the software side, the behaviors mapped onto the DSP were implemented by converting the SpecC
hierarchy into C code and compiling the code into the DSP’s instruction set. On the hardware side, the
behaviors mapped onto the custom hardware co-processor and peripheral blocks were implemented down
to RTL by performing high-level synthesis from the SpecC description. Finally, the interfaces on the
software and hardware side were synthesized. Bus interface logic was generated as part of the custom
hardware FSMDs. On the other hand, assembly code for the bus drivers and interrupt handlers was created
and linked against the compiled DSP program.

The generated RTL code for custom hardware and interfaces was then further implemented and verified
down to the gate-level by pushing it through logic synthesis (Synopsys DesignCompiler).

9.9 Implementation Model
The final SpecC implementation model of the vocoder design is shown in Figure 16. The implementation
model performs a cycle-accurate co-simulation of hardware and software components communicating via
bus wires.

nWR

Data[23:0]

intC

Addr[15:0]

MCS

nRD

Codebook
FSMD

Motorola
DSP56600

ISS
OBJ

DSP HW

Figure 16: Vocoder Implementation Model.

15

The model for the DSP component runs an instruction-set simulation of the assembly code of the software
generated in the backend, driving and sampling the bus wires according to the simulator’s outputs and
inputs.

The hardware component models are refined into FSMD models of the custom hardware RTL design. The
state machines in the hardware execute the functionality and access the bus wires in a cycle-accurate
manner.

With the DSP and custom hardware running at 60 Mhz and 100 MHz, respectively, the final results in
Figure 17 show that the timing constraints for the transcoding delays are easily satisfied. The transcoding
delays of 6 ms and 11 ms for the first subframe and the whole frame, respectively, even leave room for
additional optimizations by reducing the clock frequency to lower power consumption, for example.

SW Cycles HW Cycles ms Constraint

First subframe 338,809 28,000 6.11 10 ms
Whole frame 530,351 112,000 10.71 20 ms

Figure 17: Results, Vocoder Performance.

In summary, the vocoder project was done by two non-expert students working part-time over a period of 6
months. Since the tools were not available at the time of the project, all design tasks were performed
manually. With the availability of automated tools, the project time could have been shortened even further
down to the 12 man-weeks spend on actual design.

All in all, the project demonstrated that just by following the well-defined steps of the SpecC methodology
large productivity gains of 10x or more can already be achieved. With the help of upcoming design
automation tools, the time-to-silicon will be reduced even further.

10 Summary and Conclusions
In this paper, we presented the SpecC system-level design methodology. The SpecC methodology defines
four models and three transformations that bring an initial system specification down to an RTL-
implementation.

The specification model is a purely functional description of the desired system functionality. It is free of
any implementation details and there is no notion of time. The architecture model describes the component
structure of the system architecture and orders computation based on estimated execution delays. The
communication model refines communication into bus-functional component models. It is accurate in
timing for both computation and communication. Finally, the implementation model is a cycle-accurate
description of the system at the RTL/instruction-set level.

The SpecC design flow contains three major tasks: System synthesis consists of architecture exploration
and communication synthesis, which map computation behaviors and communication channels in the
specification onto components and busses of a system architecture, respectively. Then, in the backend, the
components are implemented by synthesizing hardware, software and bus interfaces.

References
[1] A. Gerstlauer, S. Zhao, D. Gajski, A. Horak. Design of a GSM Vocoder using SpecC Methodology. UC
Irvine, Technical Report ICS-TR-99-11, March 1999.

[2] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao. SpecC: Specification Language and Methodology.
Kluwer Academic Publishers, 2000.

[3] A. Gerstlauer, R. Dömer, J. Peng, D. Gajski. System Design: A Practical Guide with SpecC. Kluwer
Academic Publishers, 2001.

[4] http://www.cecs.uci.edu/~specc/
[5] http://www.specc.org/

